The high-K calc-alkaline granitoids in the northern part of the Mandara Hills are part of the wellexposed post-collisional plutons in northeastern Nigeria.The calc-alkaline rock association consists of quartz monzodio...The high-K calc-alkaline granitoids in the northern part of the Mandara Hills are part of the wellexposed post-collisional plutons in northeastern Nigeria.The calc-alkaline rock association consists of quartz monzodiorite,hornblende biotite granite,biotite granites and aplite which intruded the older basement consisting mainly of low-lying migmatitic gneisses and amphibolites during the Neoproterozoic Pan-African Orogeny.Petrological and geochemical studies have revealed the presence of hornblende,iron oxide,and metaluminous to slightly peraluminous characteristics in the granitoids which is typical of I-type granite.The granitoids are also depleted in some high field strength elements(e.g.Nb and Ta) as well as Ti.Plots of Mg#versus SiO2 indicate that the granite was derived from partial melting of crustal sources.Lithospheric delamination at the waning stage of the PanAfrican Orogeny possibly triggered upwelling of hot mafic magma from the mantle which underplated the lower crust.This,in turn,caused partial melting and magma generation at the lower to middle-crustal level.However,the peculiar geochemical characteristics of the quartz monzodiorite especially the enrichment in compatible elements such as MgO,Cr,and Ni,as well as LILE element(e.g.K,Ce,Cs,Ba,and Sr),signify that the rock formed from an enriched upper mantle source.The emplacement of high-K granites in the Madara Hill,therefore,marked an important episode of crustal reworking during the Neoproterozoic.However,further isotopic work is needed to confirm this model.展开更多
The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study ther...The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study therefore seeks to investigate the relationship between borehole depth and groundwater quality across the granitoid aquifers within the Birimian Supergroup in the Ashanti Region. Physicochemical analysis records of groundwater quality data were collected from 23 boreholes of public and private institutions in the Ashanti Region of Ghana, and the parametric values of iron, fluoride, total hardness, pH, nitrate, and nitrite were used to study the groundwater quality-depth relationship. The results showed that the depth-to-groundwater quality indicated a marginal increase in water quality in the range of 30 to 50 m, which is mathematically represented by the low-value correlation coefficient (r<sup>2</sup> = 0.026). A relatively significant increase occurs in the depth range of 50 to 80 m, which is given by a correlation coefficient of r<sup>2</sup> = 0.298. The mean percent parameter compatibility was 74%, 82%, 89%, and 97% at 50, 60, 70, and 80 m depths, respectively. The variations in groundwater quality per depth ratio ranged from 1.48, 1.37, 1.27, and 1.21 for 50, 60, 70, and 80 m depth, respectively. The recommended minimum borehole depth for excellent groundwater quality is suggested with a compatibility per meter depth ratio of 1.37. This results in a range between 50 and 70 m as the most desirable drilling depth for excellent groundwater quality within the granitoids of the Birimian Supergroup of the Ashanti Region in Ghana.展开更多
The magma sources,origins and precise forming ages of the miarolite from Qishan and Kuiqi intrusions are still uncertain.New results reveal that,miarolites from the Qishan and Kuiqi intrusions yield crystallization ag...The magma sources,origins and precise forming ages of the miarolite from Qishan and Kuiqi intrusions are still uncertain.New results reveal that,miarolites from the Qishan and Kuiqi intrusions yield crystallization ages of~101 and~98 Ma,and they have a high formation temperature(~910℃)and low oxygen fugacity value,indicating crystallization condition at low pressure in the upper crust with temperature of 678℃.The Qishan and Kuiqi miarolites are characterized by enrichment in SiO_(2) and high-K alkali,depletion in Ca and Mg,and belong to the high-K weak peraluminous rock series.The samples are enriched in HFSEs(i.e.,Ta,Zr and Hf)and LILEs(i.e.,Ba,P and Sr),depleted in Ba and Sr with the negative anomaly of Eu.In the primitive mantle normalized trace element spider diagram,the samples show a right-inclined‘seagull-type’pattern,combined the ratios of(La/Yb)_(N),10000×Al/Ga,Rb/Nb and Nb/Ta etc.,they were proved to be alkaline A-type granite.Combined the characterize of the trace elements,they were derived from clay-rich source accompanied pelite melting,and subjected to K-feldspar crystallization fractional.The values of ε_(Hf)(t)and tDM2 are distributed in the range of-2.8 to 3.3 with~1.2 Ga,and-6.0 to 4.0 with~1.2 Ga,revealing that they were generated from the Mesoproterozoic Cathaysia basement rocks.The comprehensive research reveals the Kuiqi and Qishan intrusions derived from crust-mantle mixing and partial melting of the crust,respectively,resulting from lithospheric extension generated by the Paleo-Pacific Plate subducted into the European-Asian Plate.展开更多
High-silica granitoids record the formation and evolution of the continental crust.A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc,Southwest China.The intrusions consist of gr...High-silica granitoids record the formation and evolution of the continental crust.A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc,Southwest China.The intrusions consist of granites,granitic porphyries,and granodiorites.Zircon U-Pb age data indicate that the Weixi granitoids formed at 248-240 Ma and were coeval with silicic volcanic rocks of the Weixi arc.The Weixi granitoids are enriched in Rb,Th,and U,depleted in Ba,Sr,Nb,Ta,and Ti,and have high light/heavy rare earth element ratios and slightly negative Eu anomalies.The Weixi granitoids have negative ε_(Nd)(t)values(-9.8 to-7.8)and negative zircon ε_(Hf)(t)values(-12.02 to-5.11).The geochemical and isotopic features suggest the Weixi granitoids were derived by partial melting of ancient crustal material.The Weixi granitoids and silicic volcanic rocks were derived from the same magma by crystal accumulation and melt extraction,respectively,and they record the formation of a continental arc in the central Sanjiang orogenic belt.展开更多
The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to d...The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to determine the origin of the mafic enclaves and their relationship with the host granitoids of the Kan granite-gneiss complex. This study also provides new information on crust-mantle interactions. The mafic enclaves of the Kan vary in shape and size and have intermediate chemical compositions. The diagrams used show a number of similarities in the major elements (and often in the trace elements) between the mafic enclaves and the host granitoids. Geochemical show that the Kan rock are metaluminous, enriched in silica, medium to high-K calc-alkaline I-type granite. The similarities reflect a mixing of basic and acid magma. Mafic enclaves have a typical magmatic structure, which is characterized by magma mixing. The genesis of these rocks is associated with the context of subduction. They result from the mixing of a mafic magma originating from the mantle and linked to subduction, and a granitic magma (type I granite) that arises from the partial melting of the crust.展开更多
Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and sy...Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and systematic whole-rock geochemical data for the Haoquangou and Liujiaxia granitoids within the North Qilian orogenic belt and the Qilian Block, respectively, to constrain their petrogenesis, and the Silurian tectonic evolution of the Qilian orogenic belt. Zircon U–Pb ages indicate that the Haoquangou and Liujiaxia intrusions were emplaced at423 ± 3 Ma and 432 ± 4 Ma, respectively. The Haoquangou granodiorites are calc-alkaline, while the Liujiaxia granites belong to the high-K calc-alkaline series.Both are peraluminous in composition and have relatively depleted Nd isotopic [ε_(Nd)(t) =(-3.9 – + 0.6)] characteristics compared with regional basement rocks, implying their derivation from a juvenile lower crust. They show adakitic geochemical characteristics and were generated by partial melting of thickened lower continental crust. Postcollisional extensional regime related to lithospheric delamination was the most likely geodynamic mechanism for the generation of the Haoquangou granodiorite, while the Liujiaxia granites were generated in a compressive setting during continental collision between the Qaidam and Qilian blocks.展开更多
The newly discovered Oligocene granitoids(33.1-28.7 Ma)at Pagele are magmatic rocks related to beryllium mineralization during the India-Asia late-collisional stage.This discovery provides an ideal example to study th...The newly discovered Oligocene granitoids(33.1-28.7 Ma)at Pagele are magmatic rocks related to beryllium mineralization during the India-Asia late-collisional stage.This discovery provides an ideal example to study the latecollisional orogeny and beryllium prospecting in the Lhasa terrane.The Oligocene granitoids include porphyritic granodiorite,StageⅠ,ⅡandⅢgranites,and granitic pegmatite.Geochemical analysis shows that the porphyritic granodiorite is characterized by high SiO_(2),K_(2)O,totalΣREE contents,and(La/Yb)N ratios;while the latter two by higher SiO_(2),lowerΣREE and(La/Yb)N ratios.Notably,the granitic pegmatite has extremely high Y/Ho,low K/Rb and Zr/Hf,and distinct REE tetrad effect(1.14-1.21).This study suggests that the porphyritic granodiorite may be derived from partial melting of beryllium-rich materials composed of Lhasa ancient crust(70%-80%)and enriched Lhasa lithospheric mantle(20%-30%)under the tearing subduction of Indian slab.The three-stage granites and granitic pegmatite,which contain higher beryllium contents or beryls,were likely generated by highly fractionation of the porphyritic granodioritic magma or other homologous magma.Considering the possible genetic and spatial link between Indian slab tear and rifts,we suggest that highly-fractionated granites in rifting systems represent important Be prospecting targets in the Lhasa terrane.展开更多
Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little ...Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little is known about the age and tectonic affinity of this basement.In this study,an integrated study of zircon U-Pb geochronology,Hf isotopes,and whole-rock major and trace elements on seven basement granitoids from seven boreholes of Qiongdongnan Basin has been carried out.New zircon U-Pb results for these granitoids present middle-late Permian((270.0±1.2)Ma;(253±3.4)Ma),middle to late Triassic((246.2±3.4)Ma;(239.3±0.96)Ma;(237.9±0.99)Ma;(228.9±1.0)Ma)and Late Cretaceous ages((120.6±0.6)Ma).New data from this study,in combination with the previous dataset,indicates that granitoid ages in northern SCS basement vary from 270 Ma to 70.5 Ma,with three age groups of 270–196 Ma,162–142 Ma,and 137–71 Ma,respectively.Except for the late Paleozoic-Mesozoic rocks in the basement of the northern SCS,a few old zircon grains with the age of(2708.1±17)Ma to(2166.6±19)Ma provide clues to the existence of the pre-Proterozoic components.The geochemical signatures indicate that the middle Permian-early Cretaceous granitoids from the Qiongdongnan Basin are I-type granites formed in a volcanic arc environment,which were probably related to the subduction of the Paleo-Pacific Plate.展开更多
The petrogeochemical analysis of the granitoids of Mount Fouimba and Mount Goma in the Seguela region (central-western C?te d’Ivoire) is the subject of this study. This analysis combines remote sensing, geophysics, p...The petrogeochemical analysis of the granitoids of Mount Fouimba and Mount Goma in the Seguela region (central-western C?te d’Ivoire) is the subject of this study. This analysis combines remote sensing, geophysics, petrography and geochemistry, in order to determine the major characteristics of the granitoids in the study area, and above all to participate in the detailed mapping of all the Ivorian terrains. The granitoids encountered in this region are essentially two-mica granites, granodiorites and porphyry basalts. Chemical analysis indicates that these granitoids are of the ferrous and magnesian type with peraluminous to weakly metaluminous characteristics. They originate from the mantle and were emplaced in an active continental margin context.展开更多
As an important part of the early Mesozoic granites in the South Qinling tectonic belt(SQTB),the Guangtoushan pluton provides a material basis for research on the composition of magma sources and the effects of perite...As an important part of the early Mesozoic granites in the South Qinling tectonic belt(SQTB),the Guangtoushan pluton provides a material basis for research on the composition of magma sources and the effects of peritectic assemblage entrainment(PAE)on the changes in the granite composition.As shown by the results of LA-ICP-MS zircon U-Pb dating,the Guangtoushan pluton was emplaced during the Late Triassic(214-212 Ma)and was formed in the post-collision stage between the SQTB and the Yangtze plate.The collected samples had high SiO_(2)content and low Cr and Ni contents,indicating that the magmas did not undergo significant crust-mantle mixing during their evolution.The Guangtoushan granitoids were distributed along the trend line of magmatic fractional crystallization in the F-An-Or diagram.This result,combined with the relatively homogeneous Sr-Nd isotopic composition,implies that the Guangtoushan pluton underwent slight assimilation and contamination.As can be inferred from the comparison between the compositions of the Guangtoushan granitoids and various fluid-absent experimental melts,the magma sources of the Guangtoushan granitoids contain a variety of materials,such as graywackes,pyroclastic graywackes,and pelites and are not derived from lower crustal mafic rocks.The correlation between the maficity and the major and trace elements further indicates that the strongly peraluminous granitoids from the Guangtoushan pluton was formed by the partial melting of biotite-bearing crustal rocks and its magmatic evolution was accompanied by the entrainment of clinopyroxenes and accessory minerals.展开更多
The granitic plutons associated with the Glito-Kpatala shear zone are composed of biotite and amphibole granodiorites, biotite granites, two-mica granites and aplitic granites, which are very poorly represented. The c...The granitic plutons associated with the Glito-Kpatala shear zone are composed of biotite and amphibole granodiorites, biotite granites, two-mica granites and aplitic granites, which are very poorly represented. The chemical and mineralogical compositions of these facies indicate that they are I type and belong to high-K calc-alkaline series, with a chemical metaluminous character displayed by the granodiorites relative to the biotite and two-mica facies whose chemical compositions vary between metaluminous and peraluminous caracter. The Th/Ta (14.04 - 43.82 ppm, mean = 26.05), Th/U (2.58 to 15.05 ppm, mean = 5.85 ppm), Zr/Hf (25.27 to 37.21, mean = 30.67 ppm) and Rb/Sr (0.16 to 4.32;mean = 1.67 ppm) ratios of these granitoids reveal a strong crustal involvement in their magmatogenesis. Variations in CaO/Na<sub>2</sub>O (0.47 - 1.44 ppm), Rb/Sr (0.14 - 0.27 ppm), Rb/Ba (0.07 - 0.14 ppm) and Sr/Y (38.21 - 174.42 ppm) ratios indicate that biotite and amphibole granodiorites with their excessive Ni (135.37 - 139.51 ppm) and Cr (395.73 - 447.74 ppm) were derived from a mafic to intermediate lower continental crust where garnet and/or amphibole were stable residual assemblage minerals. The moderate Sr/Y ratios (1.81 - 9.47 ppm) and low transition elements Ni (1 - 6.44 ppm) and Cr (7.89 - 13.47 ppm) contents in both the two-mica and biotite granites are consistent with their emplacement at relatively shallow depths in the upper to mean continental crust, at pressures below 10 Kbar. In the two-mica granites, moderate CaO/Na<sub>2</sub>O (0.20 - 0.57 ppm, mean = 0.38 ppm) and Rb/Ba (0.39 - 1.37, mean = 0.84 ppm) ratios and quite varied Rb/Sr (1.53 - 4.23 ppm, mean = 2.85 ppm) ratios indicate a predominant derivation from psammitic and pelitic metasediments rather than metagreywackes. These low ratios (0.25 ≤ CaO/Na<sub>2</sub>O ≤ 0.32, mean = 0.28 ppm;0.31 ≤ Rb/Ba ≤ 0.44, mean = 0.39 ppm;1.11 ≤ Rb/Sr ≤ 1.78, mean = 0.39 ppm) in biotite granites are more consistent with melting from a metagreywacke-derived source. Evidence for the contribution of mantle-derived mafic magma with granitic magma in the plutons studied is materialized by the presence of magmatic enclaves in both granodiorites and two-mica granites, the volcanic arc geochemical signatures displayed by the plutons in geotectonic diagrams and Nb/Ta ratios (14.14 - 34.61 ppm) closer to mantle estimates. Geochemical data and radiometric dating elements suggest that the granitoids studied can be integrated into the pan-African late magmatic episode, which corresponds between 606 and 583 Ma, to the activity of transcurrent ductile strike-slips and to the synchronous emplacement of high K calc-alkaline plutons in a post-collisional context.展开更多
Affected by the compressive stress from the South-Central (Indo-China) Peninsula, the Indosinian orogenesis, characterized by collision, thrust and uplifting, took place inside the South China Plate during 250-230 M...Affected by the compressive stress from the South-Central (Indo-China) Peninsula, the Indosinian orogenesis, characterized by collision, thrust and uplifting, took place inside the South China Plate during 250-230 Ma. The ages of the Indosinian granitoids in the Nanling Range and vicinity areas are mostly 240-205 Ma, indicating that they were emplaced in both late collision and post-collision geodynamic environments. No important granite-related metallogenesis occurred in this duration. A post-orogenic setting started at the beginning of the Yanshanian Period, which controlled large-scale granitic magmatism and related metallogenesis. This paper makes the first attempt to divide the Yanshanian Period into three sub-periods, i.e. the early, middle and late Yanshanian Periods, based mainly on the features of magmatism, especially granitoids and related metallogenesis and their geodynamic environments. The magmatic association of the Early Yanshanian (about 185-170 Ma) comprises four categories of magmatism, i.e. basalt, bimodal volcanics, A-type granite and intraplate high-K calc-alkaline (HKCA) magmatism, which indicates an extension-thinning of lithosphere and upwelling of mantle material to a relative small and local extent. Pb-Zn, Cu and Au mineralizations associated with HKCA magmatism represents the first high tide of Mesozoic metallogenesis in the Nanling Range area. During the middle Yanshanian, the lithosphere was subjected to more extensive and intensive extending and thinning, and hence mantle upwelling and basaltic magma underplating caused a great amount of crust remelting granitoids. This period can be further divided into two stages. The first stage (170-150 Ma) is represented by large-scale emplacement of crust remelting granites with local tungsten mineralization at its end. The second stage (150-140 Ma) is the most important time of large-scale mineralizations of non-ferrous and rare metals, e.g. W, Sn, Nb-Ta, Bi, Mo, Be, in the Nanling Range area. The late Yanshanian (140-65 Ma) was generally characterized by full extension and breakup of the lithosphere of South China. However, owing to the influence of the Pacific Plate movement, the eastern part of South China was predominated by subduction-related compression, which resulted in magmatism of calc-alkaline and shoshonite series and related metallogeneses of Au, Ag, Pb-Zn, Cu and (Mo, Sn), followed by extension in its late stage. In the Nanling Range area, the late Yanshanian magmatism was represented by granitic volcanic-intrusive complexes and mafic dikes, which are genetically related to volcanic-type uranium and porphyry tin deposits, and the mobilization-mineralization of uranium from pre-existing Indosinian granites.展开更多
LA-ICPMS U-Pb zircon dating of the Sanpinggou, Gangou and Fengzishan granitoids in the Douling Group of the Eastern Qinling yields ages of 760-685 Ma, which represents a strong tectono-magmatic event in the southern Q...LA-ICPMS U-Pb zircon dating of the Sanpinggou, Gangou and Fengzishan granitoids in the Douling Group of the Eastern Qinling yields ages of 760-685 Ma, which represents a strong tectono-magmatic event in the southern Qinling during the late Neoproterozoic. Geochemical data show that these intrusions have wide compositions ranging from minor gabbros through diorites to granodiorites. They are relatively enriched in LILE, poor in HFSE and strongly depleted in Nb and Ta, displaying affinities of Ⅰ-type granites formed in an active continental margin with oceanic subduction. In contrast to granitoids, gabbros and enclaves in the granitoids have higher REE abundances, relatively flat REE patterns, lower LILE, slightly higher HFSE and more depletion in Nb and Ta. All these suggest that the gabbros were formed by partial melting of the upper mantle above the subduction zone and the granitoids by the partial melting of the lower crust. Combined with regional geological data, the subduction-related granitoids in the Douling Group, together with the Tuwushan A-type granite with an age of 725 Ma and contemporaneous basic dikes in the Wudang Block, provide evidence for local subduction of oceanic basins between different blocks during the rifting in the Southern Qinling in the Neoproterozoic. Thus, the coexistences of various magmatic rocks formed in different tectonic environments indicate a complicated tectonic evolution and variety of tectonic frameworks in the Qinling area in the Neoproterozoic.展开更多
Zircon U-Pb ages of 163.8-100.4 Ma and 146.6-134.5 Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the cr...Zircon U-Pb ages of 163.8-100.4 Ma and 146.6-134.5 Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the crystallization ages of Yanshanian granitoids broadly in the Nanling. The active continental margin of South China, as revealed by a combination of zircon U-Pb data, underwent a key granitoid-dominated magmatism in 165-100 Ma. Its evolution varied temporally, and spatially, registering under control of the paleo-Pacific slab subduction. The granitoids that occurred in 165-150 Ma broadly from the South China Sea to the Nanling are preferably related to two settings from volcanic-arc to back-arc extension, respectively. The activities of Cretaceous granitoids migrated from the southeastern Guangdong (148-130 Ma) to the Pearl River Mouth basin (127-112 Ma), corresponding to the model of a retreating subduction. The subduction-related granitoid magmatism in South China continued until 108-97 Ma. A tectonic transformation from slab-subduction to extension should occur at -100 Ma.展开更多
The western Kunlun orogen in the northwest Tibet Plateau is related to subduction and collision of Proto-and Paleo-Tethys from early Paleozoic to early Mesozoic. This paper presents new LA-ICPMS zircon U-Pb ages and L...The western Kunlun orogen in the northwest Tibet Plateau is related to subduction and collision of Proto-and Paleo-Tethys from early Paleozoic to early Mesozoic. This paper presents new LA-ICPMS zircon U-Pb ages and Lu-Hf isotopes, whole-rock major and trace elements, and Sr–Nd isotopes of two Ordovician granitoid plutons(466–455 Ma) and their Silurian mafic dikes(~436 Ma) in the western Kunlun orogen. These granitoids show peraluminous high-K calcalkaline characteristics, with(^(87)Sr/^(86)Sr)_i value of 0.7129–0.7224, ε_(Nd)(t) values of -9.3 to -7.0 and zircon ε_(Hf)(t) values of -17.3 to -0.2, indicating that they were formed by partial melting of ancient lower-crust(metaigneous rocks mixed with metasedimentary rocks) with some mantle materials in response to subduction of the Proto-Tethyan Ocean and following collision. The Silurian mafic dikes were considered to have been derived from a low degree of partial melting of primary mafic magma. These mafic dikes show initial ^(87)Sr/^(86)Sr ratios of 0.7101–0.7152 and ε_(Nd)(t) values of -3.8 to -3.4 and zircon ε_(Hf)(t) values of -8.8 to -4.9, indicating that they were derived from enriched mantle in response to post-collisional slab break-off. Combined with regional geology, our new data provide valuable insight into late evolution of the Proto-Tethys.展开更多
South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui g...South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui granitoid plutons at the northeast,Huayang-Wulong-Laocheng granitoid plutons at the central part,Xiba granitoid pluton at the northwest and Guangtoushan-Liuba granitoid plutons at the southwest.These Indonisian granitoids contain a mass of various scale mafic enclaves,which show sometimes clear boundaries and sometimes transitional boundaries with their host granitoids.These granitoids also exhibit metaluminous to peraluminous series,commonly higher Mg# and a wide range of petrochemistry from low-K tholeiite series,through mid-K and high-K calc-alkaline series to shoshonite series and predominated samples are attributed to mid-K and high-K calc-alkaline series.Detailed analyses in Sr-Nd isotopic systematics and petrochemistry reveal that there may be regionally initial granitoid magma of the Indonisian granitoid plutons,comprising Dongjiangkou-Zhashui,Huayang-Wulong-Laocheng,Xiba,and Guangtoushan-Liuba granitoid plutons,which were produced by hybrids of magmas in various degrees,and the initial magmas were derived from both the mantle and the lower continental crust(LCC)sources in the SQTB.The initial granitoid magma further did the magma hybrid with the magmas from the LCC,crystallization fractionation,and assimilation with upper crustal materials during their emplacement to produce these granitoid plutons in the SQTB.These magmatism processes are most likely to occur under continent marginal arc and syn-collision to post-collision tectonic backgrounds.展开更多
Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Arch...Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Archean Zhaizi TTG gneisses. And the Beiyu metamorphic granitoids consist mainly of trondhjemites, distributed at the core of the Hujiayu anticline fold. New SHRIMP zircon U-Pb dating data show that the weighted mean ^207pb/^206pb ages are 2435.9 Ma and 2477 Ma for the Henglingguan metamorphic calc-alkaline monzogranites and Beiyu metamorphic trondhjemites, respectively, and reveal -2600 Ma inherited core in magmatic zircons. Whole-rock geochemical data indicate that all the Henglingguan and Beiyu metamorphic trondhjemites and calc- alkaline monzogranites belong to the metaluminous medium- and high-potassium calc-alkaline series. These rocks are characterized by relatively high total alkali contents (Na2O+K2O, up to 9.08%), depleted Nb, Ta, P and Ti, and right-declined REE patterns with moderate to high LREEs/HREEs fractionation (the mean ratio of (La/Yb)n = 25). The Henglingguan and Beiyu metamorphic trondhjemites display negative Rb, Th and K anomalies in the multi-dement spider diagrams normalized by primitive mantle. Sm-Nd isotopic data reveal that these granitoids have initial εNd(t) =-1.2 to +2.4 and Nd depleted mantle model ages of TMD = 2622 Ma-2939 Ma. All these geochemical features indicate that these granitoids were formed in an continent-marginal arc, and the trondhjemites mainly originated from partial melting of juvenile basaltic materials and, howbeit, the Henglingguan metamorphic calc-alkaline monzogranites derived from recycling of materials in the ancient crust under a continent-marginal arc. The granitic magma underwent contamination and fractional crystallization during their formation.展开更多
Paleoproterozoic potassic granitoids in the southern Sushui Complex from the Zhongtiao Mountains yielded SHRIMP zircon U-Pb ages of 1968-1944 Ma. Lithologically, the potassic granitoid series consists chiefly of monzo...Paleoproterozoic potassic granitoids in the southern Sushui Complex from the Zhongtiao Mountains yielded SHRIMP zircon U-Pb ages of 1968-1944 Ma. Lithologically, the potassic granitoid series consists chiefly of monzodiorite, quartz monzonite and syenogranite. Their trace elements and Sm-Nd isotope characteristics indicate that they were derived from partial melting of Archean TTG rocks in an overthickened continental crust. Petrogenesis of this potassic granitoid series implies a collisional environment within the Trans-North China Orogen in the Paleoproterozoic, which supports a tectonic model of Eastern and Western Continental Blocks being amalgamated in the Paleoproterozoic.展开更多
The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zir...The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.展开更多
The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1...The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1848 Ma. On the basis of geological and petrological characteristics, these granitoids can be classified into two groups: the earlier gneissic granodiorites and monzogranites, and the later massive leuco-monzogranites. Their geochemical and Nd isotopic features indicate that they could be derived from complicated partial melting of supracrustal rocks with an affinity of continental arc materials, such as sandy shale and pelite, and with garnet, pyroxene, hornblende and plagioclase as residual phases. Biotite, feldspar and other minerals were most likely fractionated during the magma evolution. Their source may have an affinity with continental arcs, and the granitoids could be derived from the main syn-collisional to late-orogenic tectonic environment, which may be related to the final amalgamation between the Eastern and Western continental blocks in the North China Craton.展开更多
文摘The high-K calc-alkaline granitoids in the northern part of the Mandara Hills are part of the wellexposed post-collisional plutons in northeastern Nigeria.The calc-alkaline rock association consists of quartz monzodiorite,hornblende biotite granite,biotite granites and aplite which intruded the older basement consisting mainly of low-lying migmatitic gneisses and amphibolites during the Neoproterozoic Pan-African Orogeny.Petrological and geochemical studies have revealed the presence of hornblende,iron oxide,and metaluminous to slightly peraluminous characteristics in the granitoids which is typical of I-type granite.The granitoids are also depleted in some high field strength elements(e.g.Nb and Ta) as well as Ti.Plots of Mg#versus SiO2 indicate that the granite was derived from partial melting of crustal sources.Lithospheric delamination at the waning stage of the PanAfrican Orogeny possibly triggered upwelling of hot mafic magma from the mantle which underplated the lower crust.This,in turn,caused partial melting and magma generation at the lower to middle-crustal level.However,the peculiar geochemical characteristics of the quartz monzodiorite especially the enrichment in compatible elements such as MgO,Cr,and Ni,as well as LILE element(e.g.K,Ce,Cs,Ba,and Sr),signify that the rock formed from an enriched upper mantle source.The emplacement of high-K granites in the Madara Hill,therefore,marked an important episode of crustal reworking during the Neoproterozoic.However,further isotopic work is needed to confirm this model.
文摘The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study therefore seeks to investigate the relationship between borehole depth and groundwater quality across the granitoid aquifers within the Birimian Supergroup in the Ashanti Region. Physicochemical analysis records of groundwater quality data were collected from 23 boreholes of public and private institutions in the Ashanti Region of Ghana, and the parametric values of iron, fluoride, total hardness, pH, nitrate, and nitrite were used to study the groundwater quality-depth relationship. The results showed that the depth-to-groundwater quality indicated a marginal increase in water quality in the range of 30 to 50 m, which is mathematically represented by the low-value correlation coefficient (r<sup>2</sup> = 0.026). A relatively significant increase occurs in the depth range of 50 to 80 m, which is given by a correlation coefficient of r<sup>2</sup> = 0.298. The mean percent parameter compatibility was 74%, 82%, 89%, and 97% at 50, 60, 70, and 80 m depths, respectively. The variations in groundwater quality per depth ratio ranged from 1.48, 1.37, 1.27, and 1.21 for 50, 60, 70, and 80 m depth, respectively. The recommended minimum borehole depth for excellent groundwater quality is suggested with a compatibility per meter depth ratio of 1.37. This results in a range between 50 and 70 m as the most desirable drilling depth for excellent groundwater quality within the granitoids of the Birimian Supergroup of the Ashanti Region in Ghana.
基金granted by Opening Foundation of State Key Laboratory of Continental Dynamics(Grant No.21LCD08),Northwest University。
文摘The magma sources,origins and precise forming ages of the miarolite from Qishan and Kuiqi intrusions are still uncertain.New results reveal that,miarolites from the Qishan and Kuiqi intrusions yield crystallization ages of~101 and~98 Ma,and they have a high formation temperature(~910℃)and low oxygen fugacity value,indicating crystallization condition at low pressure in the upper crust with temperature of 678℃.The Qishan and Kuiqi miarolites are characterized by enrichment in SiO_(2) and high-K alkali,depletion in Ca and Mg,and belong to the high-K weak peraluminous rock series.The samples are enriched in HFSEs(i.e.,Ta,Zr and Hf)and LILEs(i.e.,Ba,P and Sr),depleted in Ba and Sr with the negative anomaly of Eu.In the primitive mantle normalized trace element spider diagram,the samples show a right-inclined‘seagull-type’pattern,combined the ratios of(La/Yb)_(N),10000×Al/Ga,Rb/Nb and Nb/Ta etc.,they were proved to be alkaline A-type granite.Combined the characterize of the trace elements,they were derived from clay-rich source accompanied pelite melting,and subjected to K-feldspar crystallization fractional.The values of ε_(Hf)(t)and tDM2 are distributed in the range of-2.8 to 3.3 with~1.2 Ga,and-6.0 to 4.0 with~1.2 Ga,revealing that they were generated from the Mesoproterozoic Cathaysia basement rocks.The comprehensive research reveals the Kuiqi and Qishan intrusions derived from crust-mantle mixing and partial melting of the crust,respectively,resulting from lithospheric extension generated by the Paleo-Pacific Plate subducted into the European-Asian Plate.
基金financially supported by the State Key Research Development Program of China(Grant No.2022YFF0800903)the National Natural Science Foundation of China(NSFC)(Grant Nos.42261144669 and 42273073)。
文摘High-silica granitoids record the formation and evolution of the continental crust.A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc,Southwest China.The intrusions consist of granites,granitic porphyries,and granodiorites.Zircon U-Pb age data indicate that the Weixi granitoids formed at 248-240 Ma and were coeval with silicic volcanic rocks of the Weixi arc.The Weixi granitoids are enriched in Rb,Th,and U,depleted in Ba,Sr,Nb,Ta,and Ti,and have high light/heavy rare earth element ratios and slightly negative Eu anomalies.The Weixi granitoids have negative ε_(Nd)(t)values(-9.8 to-7.8)and negative zircon ε_(Hf)(t)values(-12.02 to-5.11).The geochemical and isotopic features suggest the Weixi granitoids were derived by partial melting of ancient crustal material.The Weixi granitoids and silicic volcanic rocks were derived from the same magma by crystal accumulation and melt extraction,respectively,and they record the formation of a continental arc in the central Sanjiang orogenic belt.
文摘The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to determine the origin of the mafic enclaves and their relationship with the host granitoids of the Kan granite-gneiss complex. This study also provides new information on crust-mantle interactions. The mafic enclaves of the Kan vary in shape and size and have intermediate chemical compositions. The diagrams used show a number of similarities in the major elements (and often in the trace elements) between the mafic enclaves and the host granitoids. Geochemical show that the Kan rock are metaluminous, enriched in silica, medium to high-K calc-alkaline I-type granite. The similarities reflect a mixing of basic and acid magma. Mafic enclaves have a typical magmatic structure, which is characterized by magma mixing. The genesis of these rocks is associated with the context of subduction. They result from the mixing of a mafic magma originating from the mantle and linked to subduction, and a granitic magma (type I granite) that arises from the partial melting of the crust.
基金funded by Gansu Provincial Natural Science Foundation (Grant Numbers 21JR7RA503 and22JR5RA819)the Fundamental Research Funds for the Central Universities (Grant lzujbky-2021-ct07)+1 种基金the Key Talent Project of Gansu Province (2022-Yangzhenxi)the National Second Expedition to the Tibetan Plateau (2019QZKK0704)。
文摘Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and systematic whole-rock geochemical data for the Haoquangou and Liujiaxia granitoids within the North Qilian orogenic belt and the Qilian Block, respectively, to constrain their petrogenesis, and the Silurian tectonic evolution of the Qilian orogenic belt. Zircon U–Pb ages indicate that the Haoquangou and Liujiaxia intrusions were emplaced at423 ± 3 Ma and 432 ± 4 Ma, respectively. The Haoquangou granodiorites are calc-alkaline, while the Liujiaxia granites belong to the high-K calc-alkaline series.Both are peraluminous in composition and have relatively depleted Nd isotopic [ε_(Nd)(t) =(-3.9 – + 0.6)] characteristics compared with regional basement rocks, implying their derivation from a juvenile lower crust. They show adakitic geochemical characteristics and were generated by partial melting of thickened lower continental crust. Postcollisional extensional regime related to lithospheric delamination was the most likely geodynamic mechanism for the generation of the Haoquangou granodiorite, while the Liujiaxia granites were generated in a compressive setting during continental collision between the Qaidam and Qilian blocks.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.92062105,91855214)the National Key Research and Development Program of China(Grant Nos.2021YFC2901905,2016YFC0600306)。
文摘The newly discovered Oligocene granitoids(33.1-28.7 Ma)at Pagele are magmatic rocks related to beryllium mineralization during the India-Asia late-collisional stage.This discovery provides an ideal example to study the latecollisional orogeny and beryllium prospecting in the Lhasa terrane.The Oligocene granitoids include porphyritic granodiorite,StageⅠ,ⅡandⅢgranites,and granitic pegmatite.Geochemical analysis shows that the porphyritic granodiorite is characterized by high SiO_(2),K_(2)O,totalΣREE contents,and(La/Yb)N ratios;while the latter two by higher SiO_(2),lowerΣREE and(La/Yb)N ratios.Notably,the granitic pegmatite has extremely high Y/Ho,low K/Rb and Zr/Hf,and distinct REE tetrad effect(1.14-1.21).This study suggests that the porphyritic granodiorite may be derived from partial melting of beryllium-rich materials composed of Lhasa ancient crust(70%-80%)and enriched Lhasa lithospheric mantle(20%-30%)under the tearing subduction of Indian slab.The three-stage granites and granitic pegmatite,which contain higher beryllium contents or beryls,were likely generated by highly fractionation of the porphyritic granodioritic magma or other homologous magma.Considering the possible genetic and spatial link between Indian slab tear and rifts,we suggest that highly-fractionated granites in rifting systems represent important Be prospecting targets in the Lhasa terrane.
基金The National Natural Science Foundation of China under contract No.42072181。
文摘Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little is known about the age and tectonic affinity of this basement.In this study,an integrated study of zircon U-Pb geochronology,Hf isotopes,and whole-rock major and trace elements on seven basement granitoids from seven boreholes of Qiongdongnan Basin has been carried out.New zircon U-Pb results for these granitoids present middle-late Permian((270.0±1.2)Ma;(253±3.4)Ma),middle to late Triassic((246.2±3.4)Ma;(239.3±0.96)Ma;(237.9±0.99)Ma;(228.9±1.0)Ma)and Late Cretaceous ages((120.6±0.6)Ma).New data from this study,in combination with the previous dataset,indicates that granitoid ages in northern SCS basement vary from 270 Ma to 70.5 Ma,with three age groups of 270–196 Ma,162–142 Ma,and 137–71 Ma,respectively.Except for the late Paleozoic-Mesozoic rocks in the basement of the northern SCS,a few old zircon grains with the age of(2708.1±17)Ma to(2166.6±19)Ma provide clues to the existence of the pre-Proterozoic components.The geochemical signatures indicate that the middle Permian-early Cretaceous granitoids from the Qiongdongnan Basin are I-type granites formed in a volcanic arc environment,which were probably related to the subduction of the Paleo-Pacific Plate.
文摘The petrogeochemical analysis of the granitoids of Mount Fouimba and Mount Goma in the Seguela region (central-western C?te d’Ivoire) is the subject of this study. This analysis combines remote sensing, geophysics, petrography and geochemistry, in order to determine the major characteristics of the granitoids in the study area, and above all to participate in the detailed mapping of all the Ivorian terrains. The granitoids encountered in this region are essentially two-mica granites, granodiorites and porphyry basalts. Chemical analysis indicates that these granitoids are of the ferrous and magnesian type with peraluminous to weakly metaluminous characteristics. They originate from the mantle and were emplaced in an active continental margin context.
基金funded by the State Key Program of National Natural Science of China(Grant No.41730426)the National Natural Science Foundation of China(Grant Nos.41872066,41702069 and 41602040)the Research Fund of Hebei Provincial Bureau of Geology and Mineral Resources(454-0601-YBN-DXXP)。
文摘As an important part of the early Mesozoic granites in the South Qinling tectonic belt(SQTB),the Guangtoushan pluton provides a material basis for research on the composition of magma sources and the effects of peritectic assemblage entrainment(PAE)on the changes in the granite composition.As shown by the results of LA-ICP-MS zircon U-Pb dating,the Guangtoushan pluton was emplaced during the Late Triassic(214-212 Ma)and was formed in the post-collision stage between the SQTB and the Yangtze plate.The collected samples had high SiO_(2)content and low Cr and Ni contents,indicating that the magmas did not undergo significant crust-mantle mixing during their evolution.The Guangtoushan granitoids were distributed along the trend line of magmatic fractional crystallization in the F-An-Or diagram.This result,combined with the relatively homogeneous Sr-Nd isotopic composition,implies that the Guangtoushan pluton underwent slight assimilation and contamination.As can be inferred from the comparison between the compositions of the Guangtoushan granitoids and various fluid-absent experimental melts,the magma sources of the Guangtoushan granitoids contain a variety of materials,such as graywackes,pyroclastic graywackes,and pelites and are not derived from lower crustal mafic rocks.The correlation between the maficity and the major and trace elements further indicates that the strongly peraluminous granitoids from the Guangtoushan pluton was formed by the partial melting of biotite-bearing crustal rocks and its magmatic evolution was accompanied by the entrainment of clinopyroxenes and accessory minerals.
文摘The granitic plutons associated with the Glito-Kpatala shear zone are composed of biotite and amphibole granodiorites, biotite granites, two-mica granites and aplitic granites, which are very poorly represented. The chemical and mineralogical compositions of these facies indicate that they are I type and belong to high-K calc-alkaline series, with a chemical metaluminous character displayed by the granodiorites relative to the biotite and two-mica facies whose chemical compositions vary between metaluminous and peraluminous caracter. The Th/Ta (14.04 - 43.82 ppm, mean = 26.05), Th/U (2.58 to 15.05 ppm, mean = 5.85 ppm), Zr/Hf (25.27 to 37.21, mean = 30.67 ppm) and Rb/Sr (0.16 to 4.32;mean = 1.67 ppm) ratios of these granitoids reveal a strong crustal involvement in their magmatogenesis. Variations in CaO/Na<sub>2</sub>O (0.47 - 1.44 ppm), Rb/Sr (0.14 - 0.27 ppm), Rb/Ba (0.07 - 0.14 ppm) and Sr/Y (38.21 - 174.42 ppm) ratios indicate that biotite and amphibole granodiorites with their excessive Ni (135.37 - 139.51 ppm) and Cr (395.73 - 447.74 ppm) were derived from a mafic to intermediate lower continental crust where garnet and/or amphibole were stable residual assemblage minerals. The moderate Sr/Y ratios (1.81 - 9.47 ppm) and low transition elements Ni (1 - 6.44 ppm) and Cr (7.89 - 13.47 ppm) contents in both the two-mica and biotite granites are consistent with their emplacement at relatively shallow depths in the upper to mean continental crust, at pressures below 10 Kbar. In the two-mica granites, moderate CaO/Na<sub>2</sub>O (0.20 - 0.57 ppm, mean = 0.38 ppm) and Rb/Ba (0.39 - 1.37, mean = 0.84 ppm) ratios and quite varied Rb/Sr (1.53 - 4.23 ppm, mean = 2.85 ppm) ratios indicate a predominant derivation from psammitic and pelitic metasediments rather than metagreywackes. These low ratios (0.25 ≤ CaO/Na<sub>2</sub>O ≤ 0.32, mean = 0.28 ppm;0.31 ≤ Rb/Ba ≤ 0.44, mean = 0.39 ppm;1.11 ≤ Rb/Sr ≤ 1.78, mean = 0.39 ppm) in biotite granites are more consistent with melting from a metagreywacke-derived source. Evidence for the contribution of mantle-derived mafic magma with granitic magma in the plutons studied is materialized by the presence of magmatic enclaves in both granodiorites and two-mica granites, the volcanic arc geochemical signatures displayed by the plutons in geotectonic diagrams and Nb/Ta ratios (14.14 - 34.61 ppm) closer to mantle estimates. Geochemical data and radiometric dating elements suggest that the granitoids studied can be integrated into the pan-African late magmatic episode, which corresponds between 606 and 583 Ma, to the activity of transcurrent ductile strike-slips and to the synchronous emplacement of high K calc-alkaline plutons in a post-collisional context.
基金The present study is supported by the State Key Fundamental Research Project(Grant No.G1999043209)National Natural Science Foundation of China(Grant No.40132010).
文摘Affected by the compressive stress from the South-Central (Indo-China) Peninsula, the Indosinian orogenesis, characterized by collision, thrust and uplifting, took place inside the South China Plate during 250-230 Ma. The ages of the Indosinian granitoids in the Nanling Range and vicinity areas are mostly 240-205 Ma, indicating that they were emplaced in both late collision and post-collision geodynamic environments. No important granite-related metallogenesis occurred in this duration. A post-orogenic setting started at the beginning of the Yanshanian Period, which controlled large-scale granitic magmatism and related metallogenesis. This paper makes the first attempt to divide the Yanshanian Period into three sub-periods, i.e. the early, middle and late Yanshanian Periods, based mainly on the features of magmatism, especially granitoids and related metallogenesis and their geodynamic environments. The magmatic association of the Early Yanshanian (about 185-170 Ma) comprises four categories of magmatism, i.e. basalt, bimodal volcanics, A-type granite and intraplate high-K calc-alkaline (HKCA) magmatism, which indicates an extension-thinning of lithosphere and upwelling of mantle material to a relative small and local extent. Pb-Zn, Cu and Au mineralizations associated with HKCA magmatism represents the first high tide of Mesozoic metallogenesis in the Nanling Range area. During the middle Yanshanian, the lithosphere was subjected to more extensive and intensive extending and thinning, and hence mantle upwelling and basaltic magma underplating caused a great amount of crust remelting granitoids. This period can be further divided into two stages. The first stage (170-150 Ma) is represented by large-scale emplacement of crust remelting granites with local tungsten mineralization at its end. The second stage (150-140 Ma) is the most important time of large-scale mineralizations of non-ferrous and rare metals, e.g. W, Sn, Nb-Ta, Bi, Mo, Be, in the Nanling Range area. The late Yanshanian (140-65 Ma) was generally characterized by full extension and breakup of the lithosphere of South China. However, owing to the influence of the Pacific Plate movement, the eastern part of South China was predominated by subduction-related compression, which resulted in magmatism of calc-alkaline and shoshonite series and related metallogeneses of Au, Ag, Pb-Zn, Cu and (Mo, Sn), followed by extension in its late stage. In the Nanling Range area, the late Yanshanian magmatism was represented by granitic volcanic-intrusive complexes and mafic dikes, which are genetically related to volcanic-type uranium and porphyry tin deposits, and the mobilization-mineralization of uranium from pre-existing Indosinian granites.
基金the National Natural Science Foundation of China(grant Nos.40032010-C,40072065 , 40372039) the Foundation of Senior Visiting Scholarship of Western Colleges,Ministry of Education,China.
文摘LA-ICPMS U-Pb zircon dating of the Sanpinggou, Gangou and Fengzishan granitoids in the Douling Group of the Eastern Qinling yields ages of 760-685 Ma, which represents a strong tectono-magmatic event in the southern Qinling during the late Neoproterozoic. Geochemical data show that these intrusions have wide compositions ranging from minor gabbros through diorites to granodiorites. They are relatively enriched in LILE, poor in HFSE and strongly depleted in Nb and Ta, displaying affinities of Ⅰ-type granites formed in an active continental margin with oceanic subduction. In contrast to granitoids, gabbros and enclaves in the granitoids have higher REE abundances, relatively flat REE patterns, lower LILE, slightly higher HFSE and more depletion in Nb and Ta. All these suggest that the gabbros were formed by partial melting of the upper mantle above the subduction zone and the granitoids by the partial melting of the lower crust. Combined with regional geological data, the subduction-related granitoids in the Douling Group, together with the Tuwushan A-type granite with an age of 725 Ma and contemporaneous basic dikes in the Wudang Block, provide evidence for local subduction of oceanic basins between different blocks during the rifting in the Southern Qinling in the Neoproterozoic. Thus, the coexistences of various magmatic rocks formed in different tectonic environments indicate a complicated tectonic evolution and variety of tectonic frameworks in the Qinling area in the Neoproterozoic.
基金supported by the State Key Program of the National Natural Science of China(grant no2008ZX05023-003)the project of the State Key Laboratory of Marine Geology(grant noMG200904)the National Natural Science Foundation of China (grant no40872138)
文摘Zircon U-Pb ages of 163.8-100.4 Ma and 146.6-134.5 Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the crystallization ages of Yanshanian granitoids broadly in the Nanling. The active continental margin of South China, as revealed by a combination of zircon U-Pb data, underwent a key granitoid-dominated magmatism in 165-100 Ma. Its evolution varied temporally, and spatially, registering under control of the paleo-Pacific slab subduction. The granitoids that occurred in 165-150 Ma broadly from the South China Sea to the Nanling are preferably related to two settings from volcanic-arc to back-arc extension, respectively. The activities of Cretaceous granitoids migrated from the southeastern Guangdong (148-130 Ma) to the Pearl River Mouth basin (127-112 Ma), corresponding to the model of a retreating subduction. The subduction-related granitoid magmatism in South China continued until 108-97 Ma. A tectonic transformation from slab-subduction to extension should occur at -100 Ma.
基金funded by the Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDA20070304the Fundamental Research Funds for the Chinese Academy of Geological Sciences(YYWF201601)+1 种基金projects of China Geological Survey(DD20160004,20160083-1,12120115000801,121201101000150014)the National Natural Science Foundation of China(grant 41772232)
文摘The western Kunlun orogen in the northwest Tibet Plateau is related to subduction and collision of Proto-and Paleo-Tethys from early Paleozoic to early Mesozoic. This paper presents new LA-ICPMS zircon U-Pb ages and Lu-Hf isotopes, whole-rock major and trace elements, and Sr–Nd isotopes of two Ordovician granitoid plutons(466–455 Ma) and their Silurian mafic dikes(~436 Ma) in the western Kunlun orogen. These granitoids show peraluminous high-K calcalkaline characteristics, with(^(87)Sr/^(86)Sr)_i value of 0.7129–0.7224, ε_(Nd)(t) values of -9.3 to -7.0 and zircon ε_(Hf)(t) values of -17.3 to -0.2, indicating that they were formed by partial melting of ancient lower-crust(metaigneous rocks mixed with metasedimentary rocks) with some mantle materials in response to subduction of the Proto-Tethyan Ocean and following collision. The Silurian mafic dikes were considered to have been derived from a low degree of partial melting of primary mafic magma. These mafic dikes show initial ^(87)Sr/^(86)Sr ratios of 0.7101–0.7152 and ε_(Nd)(t) values of -3.8 to -3.4 and zircon ε_(Hf)(t) values of -8.8 to -4.9, indicating that they were derived from enriched mantle in response to post-collisional slab break-off. Combined with regional geology, our new data provide valuable insight into late evolution of the Proto-Tethys.
基金provided by the National Scientific and Tecnological Support Program of China(Grant No:2006BAB01A11)
文摘South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui granitoid plutons at the northeast,Huayang-Wulong-Laocheng granitoid plutons at the central part,Xiba granitoid pluton at the northwest and Guangtoushan-Liuba granitoid plutons at the southwest.These Indonisian granitoids contain a mass of various scale mafic enclaves,which show sometimes clear boundaries and sometimes transitional boundaries with their host granitoids.These granitoids also exhibit metaluminous to peraluminous series,commonly higher Mg# and a wide range of petrochemistry from low-K tholeiite series,through mid-K and high-K calc-alkaline series to shoshonite series and predominated samples are attributed to mid-K and high-K calc-alkaline series.Detailed analyses in Sr-Nd isotopic systematics and petrochemistry reveal that there may be regionally initial granitoid magma of the Indonisian granitoid plutons,comprising Dongjiangkou-Zhashui,Huayang-Wulong-Laocheng,Xiba,and Guangtoushan-Liuba granitoid plutons,which were produced by hybrids of magmas in various degrees,and the initial magmas were derived from both the mantle and the lower continental crust(LCC)sources in the SQTB.The initial granitoid magma further did the magma hybrid with the magmas from the LCC,crystallization fractionation,and assimilation with upper crustal materials during their emplacement to produce these granitoid plutons in the SQTB.These magmatism processes are most likely to occur under continent marginal arc and syn-collision to post-collision tectonic backgrounds.
基金the National Natural Science Foundation of China (40412012035, 40472096) for financial support.
文摘Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Archean Zhaizi TTG gneisses. And the Beiyu metamorphic granitoids consist mainly of trondhjemites, distributed at the core of the Hujiayu anticline fold. New SHRIMP zircon U-Pb dating data show that the weighted mean ^207pb/^206pb ages are 2435.9 Ma and 2477 Ma for the Henglingguan metamorphic calc-alkaline monzogranites and Beiyu metamorphic trondhjemites, respectively, and reveal -2600 Ma inherited core in magmatic zircons. Whole-rock geochemical data indicate that all the Henglingguan and Beiyu metamorphic trondhjemites and calc- alkaline monzogranites belong to the metaluminous medium- and high-potassium calc-alkaline series. These rocks are characterized by relatively high total alkali contents (Na2O+K2O, up to 9.08%), depleted Nb, Ta, P and Ti, and right-declined REE patterns with moderate to high LREEs/HREEs fractionation (the mean ratio of (La/Yb)n = 25). The Henglingguan and Beiyu metamorphic trondhjemites display negative Rb, Th and K anomalies in the multi-dement spider diagrams normalized by primitive mantle. Sm-Nd isotopic data reveal that these granitoids have initial εNd(t) =-1.2 to +2.4 and Nd depleted mantle model ages of TMD = 2622 Ma-2939 Ma. All these geochemical features indicate that these granitoids were formed in an continent-marginal arc, and the trondhjemites mainly originated from partial melting of juvenile basaltic materials and, howbeit, the Henglingguan metamorphic calc-alkaline monzogranites derived from recycling of materials in the ancient crust under a continent-marginal arc. The granitic magma underwent contamination and fractional crystallization during their formation.
基金This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 40412012035 and 40511140503).
文摘Paleoproterozoic potassic granitoids in the southern Sushui Complex from the Zhongtiao Mountains yielded SHRIMP zircon U-Pb ages of 1968-1944 Ma. Lithologically, the potassic granitoid series consists chiefly of monzodiorite, quartz monzonite and syenogranite. Their trace elements and Sm-Nd isotope characteristics indicate that they were derived from partial melting of Archean TTG rocks in an overthickened continental crust. Petrogenesis of this potassic granitoid series implies a collisional environment within the Trans-North China Orogen in the Paleoproterozoic, which supports a tectonic model of Eastern and Western Continental Blocks being amalgamated in the Paleoproterozoic.
基金financially supported by the National Project of Scientific and Technological Support(Grant No:2006BAB01A11)
文摘The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.
基金This study is financially supported by the National Natural Science Foundation of China (Grant Nos. 40412012035, 40511140503, 40472096, 40502009 and 40472118).
文摘The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1848 Ma. On the basis of geological and petrological characteristics, these granitoids can be classified into two groups: the earlier gneissic granodiorites and monzogranites, and the later massive leuco-monzogranites. Their geochemical and Nd isotopic features indicate that they could be derived from complicated partial melting of supracrustal rocks with an affinity of continental arc materials, such as sandy shale and pelite, and with garnet, pyroxene, hornblende and plagioclase as residual phases. Biotite, feldspar and other minerals were most likely fractionated during the magma evolution. Their source may have an affinity with continental arcs, and the granitoids could be derived from the main syn-collisional to late-orogenic tectonic environment, which may be related to the final amalgamation between the Eastern and Western continental blocks in the North China Craton.