In this research work, the authors, using the recently developed method of fractionating the forms of inorganic phosphorus in calcareous soils, have studied the transformation processes of inorgnic phosphorus in three...In this research work, the authors, using the recently developed method of fractionating the forms of inorganic phosphorus in calcareous soils, have studied the transformation processes of inorgnic phosphorus in three different phosphate fertilizers, i. e., superphosphate, diammonium phosphate and calcium magnesium phosphate, being commonly used in China, during a period of 3 years after their application to calcareous soils, and based on the experimental results obtained, some problems in current use of phosphate fertilizers are discussed.展开更多
Knowledge of phosphorus (P) behavior in long-term fertilized soils is essential for programming fertilization practices and for sustaining environmental quality. The long-term (1984-1997) effects of various fertil...Knowledge of phosphorus (P) behavior in long-term fertilized soils is essential for programming fertilization practices and for sustaining environmental quality. The long-term (1984-1997) effects of various fertilization treatments on P changes and sorption isotherms as well as the relationship of soil properties to P sorption and P forms were evaluated in an Ustic Isohumisol, a calcareous soil, on the Loess Plateau, China. Compared to 1984, after 13 years of crop production, total soil P in the no-P treatments (control and N treatment) decreased by 5%-7%, but in the phosphorus fertilizer alone (P), nitrogen and phosphorus fertilizers in combination (NP), manure alone (M), and nitrogen and phosphorus fertilizers and manure in combination (NPM) treatments, it increased by 22%, 19%, 28%, and 58%, respectively. Residual fertilizer P was found mainly in NH4Ac-soluble P (Cas-P), followed by NaHCO3-soluble P (NaHCO3-P), and NH4F-soluble P (Al-P). Phosphorus sorption in the soils with different fertilization practices fit the Langmuir equations. Phosphorus sorption capacity in the no-P treatments increased, whereas it decreased in the P-included treatments (P, NP, and NPM treatments). Phosphorus sorption maximum (Qm) was significantly and negatively correlated to inorganic P including NaHCO3-P, Cas-P, NaOH-Na2CO3-soluble P (Fe-P), and Al-P (P ≤ 0.01). Moreover, long-term fertilization increased soil organic carbon in the NP, M, and NPM treatments and decreased pH in the NP and NPM treatments. Thus, the ability of the soil to release sorbed P to the environment increased under long-term P fertilization.展开更多
A study was carried out on contribution of iron pbosphate to phosphorus nutrition of rice plant nnderwaterlogged and moist conditions, respectively, by use of synthetic Fe ̄(32) PO_4 . nH_2O, tagging directly the iron...A study was carried out on contribution of iron pbosphate to phosphorus nutrition of rice plant nnderwaterlogged and moist conditions, respectively, by use of synthetic Fe ̄(32) PO_4 . nH_2O, tagging directly the ironphophate in calcareous paddy soils.Results showed that under waterlogged condition, similar to iron phosphate in acidic paddy soils, that incalcareous paddy soils was an important source of phosphorus to rice plant, and the amount of phosphorusoriginated from it generally constituted 30-65% of the total phosphorus absorbed by rice plant.展开更多
Phosphorus (P) is a vital plant nutrient, available to plant roots only in soluble forms that are in short supply in the soil. Adding phosphate- based fertilizers to increase agricultural yields is a widely used pract...Phosphorus (P) is a vital plant nutrient, available to plant roots only in soluble forms that are in short supply in the soil. Adding phosphate- based fertilizers to increase agricultural yields is a widely used practice;however, the bio- availability of P remains low due to chemical transformations of P into insoluble forms. Thus, phosphate solubilizing bacteria (PSB) play an important role in reducing P deficiency in soil. The goal of this study was to assess biotechnological potential of phosphate-solubilizing bacterial strains. In this study, phosphate solubilizing microorganisms (PSM) were isolated from different soil samples of Southern regions of Kazakhstan. The biological activity of PSM was studied based on their effect on the growth of wheat seeds. The different taxonomic genera of these PSM were identified: Arthrobacter spp., Aureobacterium spp., Azotobacter spp., Bacterium spp., Baccillus spp. Finally, phosphate- solubilizing activity of isolated strains of PSM was assessed.展开更多
Mechanisms controlling phosphorus(P) availability and the roles of microorganisms in the efficient utilization of soil P in the wheat–maize double cropping system are poorly understood.In the present study,we conduct...Mechanisms controlling phosphorus(P) availability and the roles of microorganisms in the efficient utilization of soil P in the wheat–maize double cropping system are poorly understood.In the present study,we conducted a pot experiment for four consecutive wheat–maize seasons(2016–2018) using calcareous soils with high(30.36 mg kg^(–1)) and low(9.78 mg kg^(–1)) initial Olsen-P content to evaluate the effects of conventional P fertilizer application to both wheat and maize(Pwm) along with a reduced P fertilizer application only to wheat(Pw).The microbial community structure along with soil P availability parameters and crop yield were determined.The results showed that the Pw treatment reduces the annual P input by 33.3% without affecting the total yield for at least two consecutive years as compared with the Pwm treatment in the high Olsen-P soil.Soil water-soluble P concentrations in the Pw treatment were similar to those in the Pwm treatment at the 12-leaf collar stage when maize requires the most P.Furthermore,the soil P content significantly affected soil microbial communities,especially fungal communities.Meanwhile,the relative abundances of Proteobacteria and alkaline phosphatase(ALP) activity of Pw were significantly higher(by 11.4 and 13.3%) than those of Pwm in soil with high Olsen-P.The microfloral contribution to yield was greater than that of soil P content in soil with high Olsen-P.Relative abundances of Bacillus and Rhizobium were enriched in the Pw treatment compared with the Pwm treatment.Bacillus showed a significant positive correlation with acid phosphatase(ACP) activity,and Rhizobium displayed significant positive correlations with ACP and ALP in soil with high Olsen-P,which may enhance P availability.Our findings suggested that the application of P fertilization only to wheat is practical in high P soils to ensure optimal production in the wheat and maize double cropping system and that the soil P availability and microbial community may collaborate to maintain optimal yield in a wheat–maize double cropping system.展开更多
文摘In this research work, the authors, using the recently developed method of fractionating the forms of inorganic phosphorus in calcareous soils, have studied the transformation processes of inorgnic phosphorus in three different phosphate fertilizers, i. e., superphosphate, diammonium phosphate and calcium magnesium phosphate, being commonly used in China, during a period of 3 years after their application to calcareous soils, and based on the experimental results obtained, some problems in current use of phosphate fertilizers are discussed.
基金the National Basic Research Program of China(No.2005CB121102)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX2-YW-424-2)the West Star Foundation of the Chinese Academy of Sciences
文摘Knowledge of phosphorus (P) behavior in long-term fertilized soils is essential for programming fertilization practices and for sustaining environmental quality. The long-term (1984-1997) effects of various fertilization treatments on P changes and sorption isotherms as well as the relationship of soil properties to P sorption and P forms were evaluated in an Ustic Isohumisol, a calcareous soil, on the Loess Plateau, China. Compared to 1984, after 13 years of crop production, total soil P in the no-P treatments (control and N treatment) decreased by 5%-7%, but in the phosphorus fertilizer alone (P), nitrogen and phosphorus fertilizers in combination (NP), manure alone (M), and nitrogen and phosphorus fertilizers and manure in combination (NPM) treatments, it increased by 22%, 19%, 28%, and 58%, respectively. Residual fertilizer P was found mainly in NH4Ac-soluble P (Cas-P), followed by NaHCO3-soluble P (NaHCO3-P), and NH4F-soluble P (Al-P). Phosphorus sorption in the soils with different fertilization practices fit the Langmuir equations. Phosphorus sorption capacity in the no-P treatments increased, whereas it decreased in the P-included treatments (P, NP, and NPM treatments). Phosphorus sorption maximum (Qm) was significantly and negatively correlated to inorganic P including NaHCO3-P, Cas-P, NaOH-Na2CO3-soluble P (Fe-P), and Al-P (P ≤ 0.01). Moreover, long-term fertilization increased soil organic carbon in the NP, M, and NPM treatments and decreased pH in the NP and NPM treatments. Thus, the ability of the soil to release sorbed P to the environment increased under long-term P fertilization.
文摘A study was carried out on contribution of iron pbosphate to phosphorus nutrition of rice plant nnderwaterlogged and moist conditions, respectively, by use of synthetic Fe ̄(32) PO_4 . nH_2O, tagging directly the ironphophate in calcareous paddy soils.Results showed that under waterlogged condition, similar to iron phosphate in acidic paddy soils, that incalcareous paddy soils was an important source of phosphorus to rice plant, and the amount of phosphorusoriginated from it generally constituted 30-65% of the total phosphorus absorbed by rice plant.
文摘Phosphorus (P) is a vital plant nutrient, available to plant roots only in soluble forms that are in short supply in the soil. Adding phosphate- based fertilizers to increase agricultural yields is a widely used practice;however, the bio- availability of P remains low due to chemical transformations of P into insoluble forms. Thus, phosphate solubilizing bacteria (PSB) play an important role in reducing P deficiency in soil. The goal of this study was to assess biotechnological potential of phosphate-solubilizing bacterial strains. In this study, phosphate solubilizing microorganisms (PSM) were isolated from different soil samples of Southern regions of Kazakhstan. The biological activity of PSM was studied based on their effect on the growth of wheat seeds. The different taxonomic genera of these PSM were identified: Arthrobacter spp., Aureobacterium spp., Azotobacter spp., Bacterium spp., Baccillus spp. Finally, phosphate- solubilizing activity of isolated strains of PSM was assessed.
基金supported by the National Natural Science Foundation of China (41977019)the National Key Research and Development Program of China (2017YFD0200201 and 2017YFD0200706)+1 种基金the Shandong Key Research and Development Program, China (2019GNC106011)the Provincial Agricultural Science and Technology Park Construction Project, Shandong (LKZ2018143)。
文摘Mechanisms controlling phosphorus(P) availability and the roles of microorganisms in the efficient utilization of soil P in the wheat–maize double cropping system are poorly understood.In the present study,we conducted a pot experiment for four consecutive wheat–maize seasons(2016–2018) using calcareous soils with high(30.36 mg kg^(–1)) and low(9.78 mg kg^(–1)) initial Olsen-P content to evaluate the effects of conventional P fertilizer application to both wheat and maize(Pwm) along with a reduced P fertilizer application only to wheat(Pw).The microbial community structure along with soil P availability parameters and crop yield were determined.The results showed that the Pw treatment reduces the annual P input by 33.3% without affecting the total yield for at least two consecutive years as compared with the Pwm treatment in the high Olsen-P soil.Soil water-soluble P concentrations in the Pw treatment were similar to those in the Pwm treatment at the 12-leaf collar stage when maize requires the most P.Furthermore,the soil P content significantly affected soil microbial communities,especially fungal communities.Meanwhile,the relative abundances of Proteobacteria and alkaline phosphatase(ALP) activity of Pw were significantly higher(by 11.4 and 13.3%) than those of Pwm in soil with high Olsen-P.The microfloral contribution to yield was greater than that of soil P content in soil with high Olsen-P.Relative abundances of Bacillus and Rhizobium were enriched in the Pw treatment compared with the Pwm treatment.Bacillus showed a significant positive correlation with acid phosphatase(ACP) activity,and Rhizobium displayed significant positive correlations with ACP and ALP in soil with high Olsen-P,which may enhance P availability.Our findings suggested that the application of P fertilization only to wheat is practical in high P soils to ensure optimal production in the wheat and maize double cropping system and that the soil P availability and microbial community may collaborate to maintain optimal yield in a wheat–maize double cropping system.