Human neuroblastoma cells (SH-SY5Y) have similar structures and functions as neural cells and have been frequently used for cell culture studies of neural cell functions.Previous studies have revealed L-and N-type c...Human neuroblastoma cells (SH-SY5Y) have similar structures and functions as neural cells and have been frequently used for cell culture studies of neural cell functions.Previous studies have revealed L-and N-type calcium channels in SH-SY5Y cells.However,the distribution of the low-voltage activated calcium channel (namely called T-type calcium channel,including Cav3.1,Cav3.2,and Cav3.3) in SH-SY5Y cells remains poorly understood.The present study detected mRNA and protein expres-sion of the T-type calcium channel (Cav3.1,Cav3.2,and Cav3.3) in cultured SH-SY5Y cells using real-time polymerase chain reaction (PCR) and western blot analysis.Results revealed mRNA and protein expression from all three T-type calcium channel subtypes in SH-SY5Y cells.Moreover,Cav3.1 was the predominant T-type calcium channel subtype in SH-SY5Y cells.展开更多
Spontaneous, rhythmical contractions, or vasomotion, can be recorded from cerebral vessels under both normal physiological and pathophysiological conditions. We investigated the cellular mechanisms underlying vasomoti...Spontaneous, rhythmical contractions, or vasomotion, can be recorded from cerebral vessels under both normal physiological and pathophysiological conditions. We investigated the cellular mechanisms underlying vasomotion in the cerebral basilar artery (BA) of Wistar rats. Pressure myograph video microscopy was used to study the changes in cerebral artery vessel diameter. The main results of this study were as follows: (1) The diameters of BA and middle cerebral artery (MCA) were 314.5±15.7 μm (n=15) and 233.3±10.1 μm (n=12) at 10 mmHg working pressure (P〈0.05), respectively. Pressure-induced vasomotion occurred in BA (22/28, 78.6%), but not in MCA (4/31, 12.9%) from 0 to 70 mmHg working pressure. As is typical for vasomotion, the contractile phase of the response was more rapid than the relaxation phase; (2) The frequency of vasomotion response and the diameter were gradually increased in BA from 0 to 70 mmHg working pressure. The amplitude of the rhythmic con- tractions was relatively constant once stable conditions were achieved. The frequency of contractions was variable and the highest value was 16.7±4.7 (n=13) per 10 min at 60 mmHg working pressure; (3) The pressure-induced vasomotion of the isolated BA was attenuated by nifedipine, NFA, 181]-GA, TEA or in Ca2+-free medium. Nifedipine, NFA, 18^-GA or Ca2+-free medium not only dampened vasomotion, but also kept BA in relaxation state. In contrasts, TEA kept BA in contraction state. These results sug- gest that the pressure-induced vasomotion of the isolated BA results from an interaction between Ca2+-activated C1- channels (CaCCs) currents and Kca currents. We hypothesize that vasomotion of BA depends on the depolarizing of the vascular smooth muscle cells (VSMCs) to activate CaCCs. Depolarization in turn activates voltage-dependent Ca2+ channels, synchronizing contractions of adjacent cells through influx of extracellular calcium and the flow of calcium through gap junctions. Subsequent calcium-induced calcium release from ryanodine-sensitive stores activates Kca channels and hyperpo- larizes VSMCs, which provides a negative feedback loop for regenerating the contractile cycle.展开更多
Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a disabling condition of unknown cause having multi-system manifestations. Our group has investigated the potential role of transient receptor potential (...Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a disabling condition of unknown cause having multi-system manifestations. Our group has investigated the potential role of transient receptor potential (TRP) ion channels in the etiology and pathomechanism of this illness. Store-operated calcium entry (SOCE) signaling is the primary intracellular calcium signaling mechanism in non-excitable cells and is associated with TRP ion channels. While the sub-family (Canonical) TRPC has been traditionally associated with this important cellular mechanism, a member of the TRPM sub-family group (Melastatin), TRPM3, has also been recently identified as participating in SOCE in white matter of the central nervous system. We have identified single nucleotide polymorphisms (SNPs) in TRP genes in natural killer (NK) cells and peripheral blood mononuclear cells (PBMCs) in CFS/ME patients. We also describe biochemical pathway changes and calcium signaling perturbations in blood cells from patients. The ubiquitous distribution of TRP ion channels and specific locations of sub-family group members such as TRPM3 suggest a contribution to systemic pathology in CFS/ME.展开更多
Acidosis is a common characteristic of brain damage. Because studies have shown that permeable Ca2+-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become new targets against pain a...Acidosis is a common characteristic of brain damage. Because studies have shown that permeable Ca2+-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become new targets against pain and various intracranial diseases. However, the mechanism associated with expression of these channels remains unclear. This study sought to observe the expression characteristics of permeable Ca2+-acid-sensing ion channels during different reperfusion inflows in rats after cerebral ischemia. The rat models were randomly divided into three groups: adaptive ischemia/reperfusion group, one-time ischemia/reperfusion group, and severe cerebral ischemic injury group. Western blot assays and immunofluorescence staining results exhibited that when compared with the one-time ischemia/reperfusion group, acid-sensing ion channel 3 and Bcl-x/I expression decreased in the adaptive ischemia/reperfusion group. Calmodulin expression was lowest in the adaptive ischemia/reperfusion group. Following adaptive reperfusion, common carotid artery flow was close to normal, and the pH value improved. Results verified that adaptive reperfusion following cerebral ischemia can suppress acid-sensing ion channel 3 expression, significantly reduce Ca2+ influx, inhibit calcium overload, and diminish Ca2+ toxicity. The effects of adaptive ischemia/reperfusion on suppressing cell apoptosis and relieving brain damage were better than that of one-time ischemia/reperfusion.展开更多
The purpose of this study is to demonstrate MCF-7 cells’ dependence on calcium for growth and to exploit that dependence to improve chemotherapy efficacy. Fura-2 fluorescence imaging shows that MCF-7 cells maintain a...The purpose of this study is to demonstrate MCF-7 cells’ dependence on calcium for growth and to exploit that dependence to improve chemotherapy efficacy. Fura-2 fluorescence imaging shows that MCF-7 cells maintain a higher basal intracellular calcium concentration than non-tumorigenic MCF-10A cells. Blocking T-type calcium channels with mibefradil reduced MCF-7 intracellular calcium concentration. Flow cytometry shows that knocking down T-type calcium channel expression with siRNA caused an increase in MCF-7 cells in G1 phase and a decrease in cells in S phase. Proliferation assays of MCF-7 cells treated with EGTA and thapsigargin reveal the dependence of MCF-7 cell growth on extracellular and intracellular calcium sources, respectively. In vitro, interlaced treatment that alternated the T-type calcium channel blocker NNC-55-0396 with paclitaxel more effectively reduced MCF-7 cell number than chemotherapy alone. In a mouse in vivo model, interlaced mibefradil and paclitaxel more effectively reduced MCF-7 xenograft size than chemotherapy alone. These findings indicate that MCF-7 cells are dependent on calcium for proliferation, particularly in passing the G1/S cell cycle checkpoint. Further, this dependence on calcium can be exploited by alternating treatment with T-type calcium channel blockers with paclitaxel in an interlaced therapy scheme that increases the efficacy of the chemotherapy.展开更多
Background: Natural killer (NK) cell phenotypes have reported to be implicated in the pathomechanism of Multiple Sclerosis (MS). Several investigators have observed reduced peripheral numbers, reduced cytotoxic activi...Background: Natural killer (NK) cell phenotypes have reported to be implicated in the pathomechanism of Multiple Sclerosis (MS). Several investigators have observed reduced peripheral numbers, reduced cytotoxic activity, and altered CD56Dim and CD56Bright NK cell phenotypes. This current project, for the first time, investigates the NK cell cytotoxicity, calcium mobilisation and transient receptor potential melastatin 3 (TRPM3) surface expression. Methods: NK cell cytotoxic activity and calcium signaling were examined in CD56Dim and CD56Bright NK cells before and after stimulation using Ionomycin, Pregnenolone sulphate, 2-Aminoethoxydiphenyl borate and Thapsigargin. Purified NK cells were labelled with antibodies to determine TRPM3, CD69 and CD107a surface expression using flow cytometry. Results: Twenty-two MS patients and 22 healthy controls were recruited for this project. Twelve of the 22 previously received Alemtuzumab (Lemtrada®) and the remaining ten reported nil medication. We report TRPM3 was significantly increased in untreated MS patients compared with healthy controls and treated MS patients (p-value 0.034). There was a significant decrease in CD69 surface expression on CD56Dim NK cell phenotype for untreated MS patients (p-value 0.031) and treated MS patients (p-value 0.036). We report altered calcium mobilisation in CD56Bright NK cells and to a lesser extent CD56Dim NK cells between healthy controls, treated and untreated MS patients. Conclusion: This investigation suggests variations in TRPM3 expression and calcium mobilisation of NK cells may be implicated in the pathogenesis of MS. Further investigation is required to determine the mechanism by which alemtuzumab alters calcium signaling in NK cells.展开更多
We propose a fractional time scale to model the calcium ion channels model which is retarded with injection of calcium-chelator Ethylene Glycol Tetraacetic Acid (EGTA). By using this nonlinear time scale and Modifie...We propose a fractional time scale to model the calcium ion channels model which is retarded with injection of calcium-chelator Ethylene Glycol Tetraacetic Acid (EGTA). By using this nonlinear time scale and Modified Riemann-Liouville fractional derivative, we convert the integer-order calcium ion channels model into fractional-order differential equations. We also analyze the range of order of fractional-order differentiM equations to ensure the equilibria of it are asymptotically stable. The simulation results are given to demonstrate the solutions of this model coincide with the real experiment data.展开更多
目的探讨参松养心胶囊(SSYX)对心肌梗死后心律失常发生和心功能不全的影响及其作用机制。方法将40只新西兰大耳白兔行冠状动脉前降支结扎术后随机分为正常对照组(Control组)10只、心梗组(MI组)10只、心梗+胺碘酮组(MI+A组,0.4 g·kg...目的探讨参松养心胶囊(SSYX)对心肌梗死后心律失常发生和心功能不全的影响及其作用机制。方法将40只新西兰大耳白兔行冠状动脉前降支结扎术后随机分为正常对照组(Control组)10只、心梗组(MI组)10只、心梗+胺碘酮组(MI+A组,0.4 g·kg^(^(-1))·d^(^(-1)))10只、心梗+参松组(MI+S组,0.5 g·kg^(^(-1))·d^(^(-1)))10只。正常对照组开胸后在冠状动脉下穿线,但不结扎。术后,分别以普食、普食+胺碘酮粉末、普食+参松养心胶囊原粉喂食。8周后将家兔处死,在心梗周边区取材,检测各组白兔缝隙连接蛋白43(CX43)、钠钙交换体(NCX)和兰尼碱受体蛋白(Ry R2)m RNA的相对表达量。结果与Control组比较,MI组CX43、Ry R2 m RNA相对表达量显著下降(P<0.05),而NCX m RNA相对表达量虽然有所下降,但其差异无统计学意义(P>0.05);与MI组比较,MI+A组CX43、Ry R2 m RNA相对表达量显著升高(P<0.05),MI+S组CX43、NCX、Ry R2 m RNA的相对表达量也显著升高(P<0.05);与MI+A组比较,MI+S组CX43、NCX m RNA的相对表达量均显著升高(P<0.05)。结论参松养心胶囊可以改善心肌梗死后心律失常以及心功能不全,其机制可能与调控各钙离子通道的开放,抑制钙超载有关。展开更多
基金the National Natural Science Foundation of China,No.81100831the Medical Science Foundation of Guangdong Health Department,No.B2011303
文摘Human neuroblastoma cells (SH-SY5Y) have similar structures and functions as neural cells and have been frequently used for cell culture studies of neural cell functions.Previous studies have revealed L-and N-type calcium channels in SH-SY5Y cells.However,the distribution of the low-voltage activated calcium channel (namely called T-type calcium channel,including Cav3.1,Cav3.2,and Cav3.3) in SH-SY5Y cells remains poorly understood.The present study detected mRNA and protein expres-sion of the T-type calcium channel (Cav3.1,Cav3.2,and Cav3.3) in cultured SH-SY5Y cells using real-time polymerase chain reaction (PCR) and western blot analysis.Results revealed mRNA and protein expression from all three T-type calcium channel subtypes in SH-SY5Y cells.Moreover,Cav3.1 was the predominant T-type calcium channel subtype in SH-SY5Y cells.
基金supported by grants from National Basic Research Program of China(No.2012CB52660000)National Natural Science Foundation of China(No.81000411,No.31100829,and No.31260247)
文摘Spontaneous, rhythmical contractions, or vasomotion, can be recorded from cerebral vessels under both normal physiological and pathophysiological conditions. We investigated the cellular mechanisms underlying vasomotion in the cerebral basilar artery (BA) of Wistar rats. Pressure myograph video microscopy was used to study the changes in cerebral artery vessel diameter. The main results of this study were as follows: (1) The diameters of BA and middle cerebral artery (MCA) were 314.5±15.7 μm (n=15) and 233.3±10.1 μm (n=12) at 10 mmHg working pressure (P〈0.05), respectively. Pressure-induced vasomotion occurred in BA (22/28, 78.6%), but not in MCA (4/31, 12.9%) from 0 to 70 mmHg working pressure. As is typical for vasomotion, the contractile phase of the response was more rapid than the relaxation phase; (2) The frequency of vasomotion response and the diameter were gradually increased in BA from 0 to 70 mmHg working pressure. The amplitude of the rhythmic con- tractions was relatively constant once stable conditions were achieved. The frequency of contractions was variable and the highest value was 16.7±4.7 (n=13) per 10 min at 60 mmHg working pressure; (3) The pressure-induced vasomotion of the isolated BA was attenuated by nifedipine, NFA, 181]-GA, TEA or in Ca2+-free medium. Nifedipine, NFA, 18^-GA or Ca2+-free medium not only dampened vasomotion, but also kept BA in relaxation state. In contrasts, TEA kept BA in contraction state. These results sug- gest that the pressure-induced vasomotion of the isolated BA results from an interaction between Ca2+-activated C1- channels (CaCCs) currents and Kca currents. We hypothesize that vasomotion of BA depends on the depolarizing of the vascular smooth muscle cells (VSMCs) to activate CaCCs. Depolarization in turn activates voltage-dependent Ca2+ channels, synchronizing contractions of adjacent cells through influx of extracellular calcium and the flow of calcium through gap junctions. Subsequent calcium-induced calcium release from ryanodine-sensitive stores activates Kca channels and hyperpo- larizes VSMCs, which provides a negative feedback loop for regenerating the contractile cycle.
文摘Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a disabling condition of unknown cause having multi-system manifestations. Our group has investigated the potential role of transient receptor potential (TRP) ion channels in the etiology and pathomechanism of this illness. Store-operated calcium entry (SOCE) signaling is the primary intracellular calcium signaling mechanism in non-excitable cells and is associated with TRP ion channels. While the sub-family (Canonical) TRPC has been traditionally associated with this important cellular mechanism, a member of the TRPM sub-family group (Melastatin), TRPM3, has also been recently identified as participating in SOCE in white matter of the central nervous system. We have identified single nucleotide polymorphisms (SNPs) in TRP genes in natural killer (NK) cells and peripheral blood mononuclear cells (PBMCs) in CFS/ME patients. We also describe biochemical pathway changes and calcium signaling perturbations in blood cells from patients. The ubiquitous distribution of TRP ion channels and specific locations of sub-family group members such as TRPM3 suggest a contribution to systemic pathology in CFS/ME.
基金supported by the National Natural Science Foundation of China,No.30872665
文摘Acidosis is a common characteristic of brain damage. Because studies have shown that permeable Ca2+-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become new targets against pain and various intracranial diseases. However, the mechanism associated with expression of these channels remains unclear. This study sought to observe the expression characteristics of permeable Ca2+-acid-sensing ion channels during different reperfusion inflows in rats after cerebral ischemia. The rat models were randomly divided into three groups: adaptive ischemia/reperfusion group, one-time ischemia/reperfusion group, and severe cerebral ischemic injury group. Western blot assays and immunofluorescence staining results exhibited that when compared with the one-time ischemia/reperfusion group, acid-sensing ion channel 3 and Bcl-x/I expression decreased in the adaptive ischemia/reperfusion group. Calmodulin expression was lowest in the adaptive ischemia/reperfusion group. Following adaptive reperfusion, common carotid artery flow was close to normal, and the pH value improved. Results verified that adaptive reperfusion following cerebral ischemia can suppress acid-sensing ion channel 3 expression, significantly reduce Ca2+ influx, inhibit calcium overload, and diminish Ca2+ toxicity. The effects of adaptive ischemia/reperfusion on suppressing cell apoptosis and relieving brain damage were better than that of one-time ischemia/reperfusion.
文摘The purpose of this study is to demonstrate MCF-7 cells’ dependence on calcium for growth and to exploit that dependence to improve chemotherapy efficacy. Fura-2 fluorescence imaging shows that MCF-7 cells maintain a higher basal intracellular calcium concentration than non-tumorigenic MCF-10A cells. Blocking T-type calcium channels with mibefradil reduced MCF-7 intracellular calcium concentration. Flow cytometry shows that knocking down T-type calcium channel expression with siRNA caused an increase in MCF-7 cells in G1 phase and a decrease in cells in S phase. Proliferation assays of MCF-7 cells treated with EGTA and thapsigargin reveal the dependence of MCF-7 cell growth on extracellular and intracellular calcium sources, respectively. In vitro, interlaced treatment that alternated the T-type calcium channel blocker NNC-55-0396 with paclitaxel more effectively reduced MCF-7 cell number than chemotherapy alone. In a mouse in vivo model, interlaced mibefradil and paclitaxel more effectively reduced MCF-7 xenograft size than chemotherapy alone. These findings indicate that MCF-7 cells are dependent on calcium for proliferation, particularly in passing the G1/S cell cycle checkpoint. Further, this dependence on calcium can be exploited by alternating treatment with T-type calcium channel blockers with paclitaxel in an interlaced therapy scheme that increases the efficacy of the chemotherapy.
文摘Background: Natural killer (NK) cell phenotypes have reported to be implicated in the pathomechanism of Multiple Sclerosis (MS). Several investigators have observed reduced peripheral numbers, reduced cytotoxic activity, and altered CD56Dim and CD56Bright NK cell phenotypes. This current project, for the first time, investigates the NK cell cytotoxicity, calcium mobilisation and transient receptor potential melastatin 3 (TRPM3) surface expression. Methods: NK cell cytotoxic activity and calcium signaling were examined in CD56Dim and CD56Bright NK cells before and after stimulation using Ionomycin, Pregnenolone sulphate, 2-Aminoethoxydiphenyl borate and Thapsigargin. Purified NK cells were labelled with antibodies to determine TRPM3, CD69 and CD107a surface expression using flow cytometry. Results: Twenty-two MS patients and 22 healthy controls were recruited for this project. Twelve of the 22 previously received Alemtuzumab (Lemtrada®) and the remaining ten reported nil medication. We report TRPM3 was significantly increased in untreated MS patients compared with healthy controls and treated MS patients (p-value 0.034). There was a significant decrease in CD69 surface expression on CD56Dim NK cell phenotype for untreated MS patients (p-value 0.031) and treated MS patients (p-value 0.036). We report altered calcium mobilisation in CD56Bright NK cells and to a lesser extent CD56Dim NK cells between healthy controls, treated and untreated MS patients. Conclusion: This investigation suggests variations in TRPM3 expression and calcium mobilisation of NK cells may be implicated in the pathogenesis of MS. Further investigation is required to determine the mechanism by which alemtuzumab alters calcium signaling in NK cells.
基金Acknowledgments The research of this paper is supported by National Natural Science Foundation of China (Grant No. 11171238) and a project supported by Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 13ZA0109).
文摘We propose a fractional time scale to model the calcium ion channels model which is retarded with injection of calcium-chelator Ethylene Glycol Tetraacetic Acid (EGTA). By using this nonlinear time scale and Modified Riemann-Liouville fractional derivative, we convert the integer-order calcium ion channels model into fractional-order differential equations. We also analyze the range of order of fractional-order differentiM equations to ensure the equilibria of it are asymptotically stable. The simulation results are given to demonstrate the solutions of this model coincide with the real experiment data.
文摘目的探讨参松养心胶囊(SSYX)对心肌梗死后心律失常发生和心功能不全的影响及其作用机制。方法将40只新西兰大耳白兔行冠状动脉前降支结扎术后随机分为正常对照组(Control组)10只、心梗组(MI组)10只、心梗+胺碘酮组(MI+A组,0.4 g·kg^(^(-1))·d^(^(-1)))10只、心梗+参松组(MI+S组,0.5 g·kg^(^(-1))·d^(^(-1)))10只。正常对照组开胸后在冠状动脉下穿线,但不结扎。术后,分别以普食、普食+胺碘酮粉末、普食+参松养心胶囊原粉喂食。8周后将家兔处死,在心梗周边区取材,检测各组白兔缝隙连接蛋白43(CX43)、钠钙交换体(NCX)和兰尼碱受体蛋白(Ry R2)m RNA的相对表达量。结果与Control组比较,MI组CX43、Ry R2 m RNA相对表达量显著下降(P<0.05),而NCX m RNA相对表达量虽然有所下降,但其差异无统计学意义(P>0.05);与MI组比较,MI+A组CX43、Ry R2 m RNA相对表达量显著升高(P<0.05),MI+S组CX43、NCX、Ry R2 m RNA的相对表达量也显著升高(P<0.05);与MI+A组比较,MI+S组CX43、NCX m RNA的相对表达量均显著升高(P<0.05)。结论参松养心胶囊可以改善心肌梗死后心律失常以及心功能不全,其机制可能与调控各钙离子通道的开放,抑制钙超载有关。