Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports thei...Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs, including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre- vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and osteogenesis.展开更多
Phosphorylated chitins (P-chitins) as the additives of calcium phosphate cements (CPCs) were prepared by the phosphorylation of chitin with phosphorus pentoxide in methanesulfonic acid. Their physical properties and e...Phosphorylated chitins (P-chitins) as the additives of calcium phosphate cements (CPCs) were prepared by the phosphorylation of chitin with phosphorus pentoxide in methanesulfonic acid. Their physical properties and effects on CPCs from monocalcium phosphate monohydrate (MCPM) and calcium oxide (CaO) or dicalcium phosphate dihydrate (DCPD) and calcium hydroxide [Ca(OH)(2)] were investigated. Addition of P-chitin (M-w = 2.60 x 10(4); degree of substitution, DS = 0.68) to the liquid phase in amounts up to 3 wt.% for MCPM and CaO cements or 1.5 wt.% for DCPD and Ca(OH)(2) cements could enhance the mechanical strength considerably, while little influence on the setting time was observed. However, further addition of P-chitin will cause no setting.展开更多
The morphology of a hydrated calcium phosphate cement (CPC) doped with several normally used additives was investigated by scanning electron microscopy (SEM) and the compressive strength of the cement was determin...The morphology of a hydrated calcium phosphate cement (CPC) doped with several normally used additives was investigated by scanning electron microscopy (SEM) and the compressive strength of the cement was determined in this study. The hydrated products of CPC without additives was rod-like hydroxyapatite (HA) grains with around 2-5 μm in length and 100 nm in width. The addition of Sr obviously decreased the crystal size of the rod-like grains. CPCs containing carbonate, collagen and gelatin showed flake-like crystal morphology. Crylic acid-containing CPC presented flocculus-like structure. And malic acid-containing CPC exhibited oriented flake-like structure. The X-ray diffraction (XRD) analysis showed that the additives used in this study did not alter the hydration products of the cement. The compressive strength tests indicated that the compressive strength of the cement with rod-like morphology HA crystals was much higher than that of the cement with flake-like morphology HA crystals, and the cement with oriented flake-like morphology HA crystals exhibited the poorest compressive strength.展开更多
Calcium phosphate cements have received much attention in recent decades owing to their biocompatibility, in situ handling, and shaping abilities. However, their low initial mechanical strength is still a major limita...Calcium phosphate cements have received much attention in recent decades owing to their biocompatibility, in situ handling, and shaping abilities. However, their low initial mechanical strength is still a major limitation. On the other hand, calcium aluminate cements (CACs) set fast and have a high initial strength and good corrosion resistance in contact with body fluids, making them excellent dental restorative materials. Therefore, the chemical, mechanical and biological properties of new-TCP/CA cement after aging in simulated body fluid (SBF) were investigated. The results indicated that the composites have setting times not appropriated for immediate applications and have degradation rates higher than those of the traditional CPCs. Moreover, the compressive strength of composite was lower than 5MPa and did not increase with SBF immersion. However, the α-TCP/CA composites showed a higher bioactivity at early stages and were not only more biocompatible but also more noncytotoxic.展开更多
The calcium phosphate cement (α-TCP/TTCP) was reinforced with oxidation-t reated carbon fibers. The effect of aspect ratio and content of carbon fiber on the compression strength and bending strength of the hardened ...The calcium phosphate cement (α-TCP/TTCP) was reinforced with oxidation-t reated carbon fibers. The effect of aspect ratio and content of carbon fiber on the compression strength and bending strength of the hardened body was discussed . The results show that the reinforcing effect is optimal as the aspect ratio is 375 and the additive amount is 0.3%(mass fraction). Under this condition,the c ompressive strength is increased by 55% (maximum 63.46 MPa),and the bending st rength is nearly increased by 100% (maximum 11.95 MPa),respectively. However,if the additive quantity and aspect ratio are too high,the effect of the carbon fibers is limited because it can not be dispersed uniformly in the hardened bod y. The biological evaluation indicates that the calcium phosphate cement reinfor ced by carbon fibers has good biocompatibility.展开更多
In this study, calcium phosphate cements (CPC) were prepared by mixing cement powders of tetracalcium phosphate (TTCP) with a cement liquid of phosphate acid saline solution. Tetracycline (TTC)-CPC, chitosan-CPC...In this study, calcium phosphate cements (CPC) were prepared by mixing cement powders of tetracalcium phosphate (TTCP) with a cement liquid of phosphate acid saline solution. Tetracycline (TTC)-CPC, chitosan-CPC and chitosan-TTC-CPC were investigated with different premixed schedule. It was demonstrate that both TTC and chitosan worked on the phase transition and crystal characteristics. TTCP mixed with phosphate acid saline solution had similar features of Fourier transform-infrared spectrometry (FT-IR) no matter it was mixed with chitosan or TTC or both. TTC premixed with cement liquid or powder had significant different features of FT-IR and 876 cm-1 seemed to be a special peak for TTC when TTC was premixed with cement liquid. This was also supported by XRD analysis, which showed that TTC premixed with cement liquid improved phase transition of TTCP to OCP. Chitosan, as organic additive, regulates the regular crystal formation and inhibits the phase transition of TTCP to OCP, except when it is mingled with cement liquid premixed with TTC in field scanning electron microscope. It was concluded that the premixed schedule influences the crystal formation and phase transition, which may be associated with its biocompatibility and bioactivities in vivo.展开更多
Carbon nanotubes ( CNTs ) and polyacrylic acid were employed to modify the setting process and hydration products of β-TCP/TTCP calcium phosphate cement. The micro-structure of hydration product and the fashion of ...Carbon nanotubes ( CNTs ) and polyacrylic acid were employed to modify the setting process and hydration products of β-TCP/TTCP calcium phosphate cement. The micro-structure of hydration product and the fashion of how additives and hydration particles interconnected were investigated. With the modification effect of CNTs , the setting particles and CNTs got winded and interconnected and thus made the composite more compact and denser.展开更多
A novel calcium phosphate cement was developed by adding different amount of SrO to tetracalcium phosphate during the fabrication process. The experimental results show that compressive strength of cements based on te...A novel calcium phosphate cement was developed by adding different amount of SrO to tetracalcium phosphate during the fabrication process. The experimental results show that compressive strength of cements based on tetracalcium phosphate doped with SrO significantly increases with the increase of SrO content, approximately 60 MPa, whilst the mechanical behavior of CPC slightly decreases if 0.7wt% SrO is added. X-ray diffraction measurement confirms the setting reaction of doped cements is similar to that of pure calcium phosphate cement (CPC). Low crystalline hydroxyapatite (HA) is found to be the main constituent of set cement. A mechanical reinforcement effect is resulted from the substitution of Sr ion to Ca2+ in tetracalcium phosphate (TTCP), accelerating HA crystal formation and a more cross-linked cement structure. In vitro bioactivity tests showed that CPC added with 0.5wt% SrO had a more rapid degradation compared with pure CPC.展开更多
To determine whether a biodegradable calcium phosphate cement(CPC) provides significant augmentation of pedicle screw fixation or not,an in vitro biomechanical study was carried out to evaluate the biomechanical effec...To determine whether a biodegradable calcium phosphate cement(CPC) provides significant augmentation of pedicle screw fixation or not,an in vitro biomechanical study was carried out to evaluate the biomechanical effect of CPC in the restoration and augmentation of pedicle screw fixation.Axial pullout test and cyclic bending resistance test were employed in the experiment,and polymethylmethacrylate (PMMA) was chosen as control.The results demonstrate that the pullout strengths following CPC restoration and augmentation are 74% greater on an average than those of the control group,but less than those of PMMA restoration group and augmentation group respectively (increased by 126% versus control).In cyclic bending resistance test,the CPC augmented screws are found to withstand a greater number of cycles or greater loading with less displacement before loosening,but the augmentation effect of PMMA is greater than that of CPC.展开更多
The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligne...The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction. The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle. XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement. To improve the mechanical properties of the CPC scaffold, the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds. After reinforced with gelatine, the compressive strength of CPC/gelatine composite increased to 5.12 MPa, around fifty times greater than that of the unreinforced macroporous CPC scaffold, which was only 0.1 MPa. And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain. SEM examination of the specimens indicated good bonding between the cement and gelatine. Participating the external load by the deformable gelatine, patching the defects of the CPC pores wall, and crack deflection were supposed to be the reinforcement mechanisms. In conclusion, the calcium phosphate cement/gelatine composite with oriented rmre structure nrenared in this work might be a potential scaffold for bone tissue engineerinm展开更多
Calcium phosphate cement for root end sealing was obtained by in mixing alpha-tricalcium phosphate and additives with an aqueous solation of citric. Powder and liquid were mixed at a ratio of 1.25g/mL. The biocompatib...Calcium phosphate cement for root end sealing was obtained by in mixing alpha-tricalcium phosphate and additives with an aqueous solation of citric. Powder and liquid were mixed at a ratio of 1.25g/mL. The biocompatibility of this material was investigated primarily by subcutaneous implantation tests. Then calcium phosphate cement was used to fill three adult dogs' root canal, both calcium hydroxide paste and hydroxyapatite paste as control. The animals were killed at 4, 12, 20 weeks postoperatively respectively. The effects of different materials on the apical closure, restoration of periapical tissues and adaptability to the dentinal surface were examined by optical and electronic microscope. The observation at 20 weeks shows that the calcium phosphate cement has the potentialities of being a root canal sealer filling material available for pulpless teeth with open-apex and destructive periapical tissue.展开更多
A modified chitosan ( N-methylene phosphonic Chitosan, NMPC) was synthesized to improve solubility and ability to bind calcium ion. The properties of the raw material chitosan and its derivative NMPC were characte...A modified chitosan ( N-methylene phosphonic Chitosan, NMPC) was synthesized to improve solubility and ability to bind calcium ion. The properties of the raw material chitosan and its derivative NMPC were characterised using FTIR , ^1H- NMR . The aim of this study was to enhance the compressive CPC by reinforcing with NMPC. A formulation consisting of CPC powder , buffer solution and gelling agent was used for preparation of the CPC. CPC powder coasisted of tetracalcium phosphate( TTCP ) and dicalcium phosphate anhydrous ( DCPA ). NMPC which acted as the gelling ageut was dissohed into KH2PO4-Na2 HPO4 buffer solution. Each specimen in the mold was sandciched between two fritted glass sides and kept for 24 hours. Compressive strengths were determined, the setting product was identified using X-ray diffraction and scanning electron microscopy was used to investigate the hydroxyapatite particles size and porosity. The experimental results showed that the dominating influence on the compressive strengths of CPC-AMPC was the HA panicle size, its uniformity and appropriate porosity.展开更多
N, O-carboxymethyl chitosan ( CMCTS ), a kind of biodegradable organic substance, was added to calcium phosphate bone cement (CPC) to prodnce a composite more similar in composition to human bone. The compressive ...N, O-carboxymethyl chitosan ( CMCTS ), a kind of biodegradable organic substance, was added to calcium phosphate bone cement (CPC) to prodnce a composite more similar in composition to human bone. The compressive strength of the new material was inereased by 10 times compared with conventional CPC.展开更多
In this study,the macroporous calcium phosphate cement with oriented pore structure was prepared by freeze casting.SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected ...In this study,the macroporous calcium phosphate cement with oriented pore structure was prepared by freeze casting.SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction.The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle.XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement.To improve the mechanical properties of the CPC scaffold,the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds.After reinforced with gelatine,the compressive strength of CPC/gelatin composite increased to 5.12 MPa,around 50 times greater than that of the unreinforced macroporous CPC scaffold,which was only 0.1 MPa.And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain.SEM examination of the specimens indicated good bonding between the cement and gelatine.In conclusion,the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this study might be a potential scaffold for bone tissue engineering.展开更多
Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic simila...Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/ morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.展开更多
Current calcium phosphate ( CaP ) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricaicium phosphate ( β- TCP ),...Current calcium phosphate ( CaP ) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricaicium phosphate ( β- TCP ), biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of compashes (CaP/pollymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3^- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses, This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity , osteoconductivity , osteoinductivity.展开更多
Out of the wide range of calcium phosphate(CaP)biomaterials,calcium phosphate bone cements(CPCs)have attracted increased attention since their discovery in the 1980s due to their valuable properties such as bioactivit...Out of the wide range of calcium phosphate(CaP)biomaterials,calcium phosphate bone cements(CPCs)have attracted increased attention since their discovery in the 1980s due to their valuable properties such as bioactivity,osteoconductivity,injectability,hardening ability through a low-temperature setting reaction and moldability.Thereafter numerous researches have been performed to enhance the properties of CPCs.Nonetheless,low mechanical performance of CPCs limits their clinical application in load bearing regions of bone.Also,the in vivo resorption and replacement of CPC with new bone tissue is still controversial,thus further improvements of high clinical importance are required.Bioactive glasses(BGs)are biocompatible and able to bond to bone,stimulating new bone growth while dissolving over time.In the last decades extensive research has been performed analyzing the role of BGs in combination with different CaPs.Thus,the focal point of this review paper is to summarize the available research data on how injectable CPC properties could be improved or affected by the addition of BG as a secondary powder phase.It was found that despite the variances of setting time and compressive strength results,desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs.The published data also revealed that the degradation rate of CPCs is significantly improved by BG addition.Moreover,the presence of BG in CPCs improves the in vitro osteogenic differentiation and cell response as well as the tissue-material interaction in vivo.展开更多
Calcium phosphate cements (CPC) are currently widely used bone replacement materials with excellent bioactivity, but have considerable disadvantages like slow degradation. For critical-sized defects, however, an impro...Calcium phosphate cements (CPC) are currently widely used bone replacement materials with excellent bioactivity, but have considerable disadvantages like slow degradation. For critical-sized defects, however, an improved degradation is essential to match the tissue regeneration, especially in younger patients who are still growing. We demonstrate that a combination of CPC with mesoporous bioactive glass (MBG) particles led to an enhanced degradation in vitro and in a critical alveolar cleft defect in rats. Additionally, to support new bone formation the MBG was functionalized with hypoxia conditioned medium (HCM) derived from rat bone marrow stromal cells. HCM-functionalized scaffolds showed an improved cell proliferation and the highest formation of new bone volume. This highly flexible material system together with the drug delivery capacity is adaptable to patient specific needs and has great potential for clinical translation.展开更多
基金supported by NIH R01 DE14190 and R21 DE22625(HX)the National Science Foundation of China 81401794(PW)and 81400487(LW)+2 种基金the Youth Fund of Science and Technology of Jilin Province 20150520043JH(LW)the China Postdoctoral Science Foundation 2015M581405(LW)the University of Maryland School of Dentistry bridge fund(HX)
文摘Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs, including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre- vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and osteogenesis.
基金The project was financially supported by the National Natural Science Foundation of China (No. 20174018).
文摘Phosphorylated chitins (P-chitins) as the additives of calcium phosphate cements (CPCs) were prepared by the phosphorylation of chitin with phosphorus pentoxide in methanesulfonic acid. Their physical properties and effects on CPCs from monocalcium phosphate monohydrate (MCPM) and calcium oxide (CaO) or dicalcium phosphate dihydrate (DCPD) and calcium hydroxide [Ca(OH)(2)] were investigated. Addition of P-chitin (M-w = 2.60 x 10(4); degree of substitution, DS = 0.68) to the liquid phase in amounts up to 3 wt.% for MCPM and CaO cements or 1.5 wt.% for DCPD and Ca(OH)(2) cements could enhance the mechanical strength considerably, while little influence on the setting time was observed. However, further addition of P-chitin will cause no setting.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.50172015the Natural Science Foundation of Guangdong Province of China under Grant 011561.
文摘The morphology of a hydrated calcium phosphate cement (CPC) doped with several normally used additives was investigated by scanning electron microscopy (SEM) and the compressive strength of the cement was determined in this study. The hydrated products of CPC without additives was rod-like hydroxyapatite (HA) grains with around 2-5 μm in length and 100 nm in width. The addition of Sr obviously decreased the crystal size of the rod-like grains. CPCs containing carbonate, collagen and gelatin showed flake-like crystal morphology. Crylic acid-containing CPC presented flocculus-like structure. And malic acid-containing CPC exhibited oriented flake-like structure. The X-ray diffraction (XRD) analysis showed that the additives used in this study did not alter the hydration products of the cement. The compressive strength tests indicated that the compressive strength of the cement with rod-like morphology HA crystals was much higher than that of the cement with flake-like morphology HA crystals, and the cement with oriented flake-like morphology HA crystals exhibited the poorest compressive strength.
文摘Calcium phosphate cements have received much attention in recent decades owing to their biocompatibility, in situ handling, and shaping abilities. However, their low initial mechanical strength is still a major limitation. On the other hand, calcium aluminate cements (CACs) set fast and have a high initial strength and good corrosion resistance in contact with body fluids, making them excellent dental restorative materials. Therefore, the chemical, mechanical and biological properties of new-TCP/CA cement after aging in simulated body fluid (SBF) were investigated. The results indicated that the composites have setting times not appropriated for immediate applications and have degradation rates higher than those of the traditional CPCs. Moreover, the compressive strength of composite was lower than 5MPa and did not increase with SBF immersion. However, the α-TCP/CA composites showed a higher bioactivity at early stages and were not only more biocompatible but also more noncytotoxic.
文摘The calcium phosphate cement (α-TCP/TTCP) was reinforced with oxidation-t reated carbon fibers. The effect of aspect ratio and content of carbon fiber on the compression strength and bending strength of the hardened body was discussed . The results show that the reinforcing effect is optimal as the aspect ratio is 375 and the additive amount is 0.3%(mass fraction). Under this condition,the c ompressive strength is increased by 55% (maximum 63.46 MPa),and the bending st rength is nearly increased by 100% (maximum 11.95 MPa),respectively. However,if the additive quantity and aspect ratio are too high,the effect of the carbon fibers is limited because it can not be dispersed uniformly in the hardened bod y. The biological evaluation indicates that the calcium phosphate cement reinfor ced by carbon fibers has good biocompatibility.
基金the National Program 863 (No. 2006AA0320433)Natural Science Fund of Wuhan City (No. 20045006071-6)Hubei Province (No. 2004AA301C15) of China
文摘In this study, calcium phosphate cements (CPC) were prepared by mixing cement powders of tetracalcium phosphate (TTCP) with a cement liquid of phosphate acid saline solution. Tetracycline (TTC)-CPC, chitosan-CPC and chitosan-TTC-CPC were investigated with different premixed schedule. It was demonstrate that both TTC and chitosan worked on the phase transition and crystal characteristics. TTCP mixed with phosphate acid saline solution had similar features of Fourier transform-infrared spectrometry (FT-IR) no matter it was mixed with chitosan or TTC or both. TTC premixed with cement liquid or powder had significant different features of FT-IR and 876 cm-1 seemed to be a special peak for TTC when TTC was premixed with cement liquid. This was also supported by XRD analysis, which showed that TTC premixed with cement liquid improved phase transition of TTCP to OCP. Chitosan, as organic additive, regulates the regular crystal formation and inhibits the phase transition of TTCP to OCP, except when it is mingled with cement liquid premixed with TTC in field scanning electron microscope. It was concluded that the premixed schedule influences the crystal formation and phase transition, which may be associated with its biocompatibility and bioactivities in vivo.
文摘Carbon nanotubes ( CNTs ) and polyacrylic acid were employed to modify the setting process and hydration products of β-TCP/TTCP calcium phosphate cement. The micro-structure of hydration product and the fashion of how additives and hydration particles interconnected were investigated. With the modification effect of CNTs , the setting particles and CNTs got winded and interconnected and thus made the composite more compact and denser.
基金Funded by the National Natural Science Foundation of China(No.50802042)
文摘A novel calcium phosphate cement was developed by adding different amount of SrO to tetracalcium phosphate during the fabrication process. The experimental results show that compressive strength of cements based on tetracalcium phosphate doped with SrO significantly increases with the increase of SrO content, approximately 60 MPa, whilst the mechanical behavior of CPC slightly decreases if 0.7wt% SrO is added. X-ray diffraction measurement confirms the setting reaction of doped cements is similar to that of pure calcium phosphate cement (CPC). Low crystalline hydroxyapatite (HA) is found to be the main constituent of set cement. A mechanical reinforcement effect is resulted from the substitution of Sr ion to Ca2+ in tetracalcium phosphate (TTCP), accelerating HA crystal formation and a more cross-linked cement structure. In vitro bioactivity tests showed that CPC added with 0.5wt% SrO had a more rapid degradation compared with pure CPC.
文摘To determine whether a biodegradable calcium phosphate cement(CPC) provides significant augmentation of pedicle screw fixation or not,an in vitro biomechanical study was carried out to evaluate the biomechanical effect of CPC in the restoration and augmentation of pedicle screw fixation.Axial pullout test and cyclic bending resistance test were employed in the experiment,and polymethylmethacrylate (PMMA) was chosen as control.The results demonstrate that the pullout strengths following CPC restoration and augmentation are 74% greater on an average than those of the control group,but less than those of PMMA restoration group and augmentation group respectively (increased by 126% versus control).In cyclic bending resistance test,the CPC augmented screws are found to withstand a greater number of cycles or greater loading with less displacement before loosening,but the augmentation effect of PMMA is greater than that of CPC.
基金the National Natural Science Foundation of China (Nos.50772037 and 50732003)the Science and Technology Program of Guangdong Province of China (No. 2008A030102008)the Research Foundation for Doctors of Jiangxi University of Science and Technology
文摘The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction. The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle. XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement. To improve the mechanical properties of the CPC scaffold, the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds. After reinforced with gelatine, the compressive strength of CPC/gelatine composite increased to 5.12 MPa, around fifty times greater than that of the unreinforced macroporous CPC scaffold, which was only 0.1 MPa. And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain. SEM examination of the specimens indicated good bonding between the cement and gelatine. Participating the external load by the deformable gelatine, patching the defects of the CPC pores wall, and crack deflection were supposed to be the reinforcement mechanisms. In conclusion, the calcium phosphate cement/gelatine composite with oriented rmre structure nrenared in this work might be a potential scaffold for bone tissue engineerinm
基金Funded by the Committee of Natural Science Fund of Hubei Province (No.2000J033)
文摘Calcium phosphate cement for root end sealing was obtained by in mixing alpha-tricalcium phosphate and additives with an aqueous solation of citric. Powder and liquid were mixed at a ratio of 1.25g/mL. The biocompatibility of this material was investigated primarily by subcutaneous implantation tests. Then calcium phosphate cement was used to fill three adult dogs' root canal, both calcium hydroxide paste and hydroxyapatite paste as control. The animals were killed at 4, 12, 20 weeks postoperatively respectively. The effects of different materials on the apical closure, restoration of periapical tissues and adaptability to the dentinal surface were examined by optical and electronic microscope. The observation at 20 weeks shows that the calcium phosphate cement has the potentialities of being a root canal sealer filling material available for pulpless teeth with open-apex and destructive periapical tissue.
文摘A modified chitosan ( N-methylene phosphonic Chitosan, NMPC) was synthesized to improve solubility and ability to bind calcium ion. The properties of the raw material chitosan and its derivative NMPC were characterised using FTIR , ^1H- NMR . The aim of this study was to enhance the compressive CPC by reinforcing with NMPC. A formulation consisting of CPC powder , buffer solution and gelling agent was used for preparation of the CPC. CPC powder coasisted of tetracalcium phosphate( TTCP ) and dicalcium phosphate anhydrous ( DCPA ). NMPC which acted as the gelling ageut was dissohed into KH2PO4-Na2 HPO4 buffer solution. Each specimen in the mold was sandciched between two fritted glass sides and kept for 24 hours. Compressive strengths were determined, the setting product was identified using X-ray diffraction and scanning electron microscopy was used to investigate the hydroxyapatite particles size and porosity. The experimental results showed that the dominating influence on the compressive strengths of CPC-AMPC was the HA panicle size, its uniformity and appropriate porosity.
文摘N, O-carboxymethyl chitosan ( CMCTS ), a kind of biodegradable organic substance, was added to calcium phosphate bone cement (CPC) to prodnce a composite more similar in composition to human bone. The compressive strength of the new material was inereased by 10 times compared with conventional CPC.
基金National Natural Science Foundation of Chinagrant number:50772037 and 50732003+1 种基金Science and Technology Program ofGuangdong Province of Chinagrant number:2008A030102008
文摘In this study,the macroporous calcium phosphate cement with oriented pore structure was prepared by freeze casting.SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction.The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle.XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement.To improve the mechanical properties of the CPC scaffold,the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds.After reinforced with gelatine,the compressive strength of CPC/gelatin composite increased to 5.12 MPa,around 50 times greater than that of the unreinforced macroporous CPC scaffold,which was only 0.1 MPa.And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain.SEM examination of the specimens indicated good bonding between the cement and gelatine.In conclusion,the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this study might be a potential scaffold for bone tissue engineering.
基金supported by NIH R01 DE14190 and R21 DE22625 (HX)National Science Foundation of China 31100695 and 31328008 (LZ), 81401794 (PW)Maryland Stem Cell Research Fund and University of Maryland School of Dentistry
文摘Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/ morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.
文摘Current calcium phosphate ( CaP ) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricaicium phosphate ( β- TCP ), biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of compashes (CaP/pollymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3^- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses, This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity , osteoconductivity , osteoinductivity.
基金financial support from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 857287(BBCE).
文摘Out of the wide range of calcium phosphate(CaP)biomaterials,calcium phosphate bone cements(CPCs)have attracted increased attention since their discovery in the 1980s due to their valuable properties such as bioactivity,osteoconductivity,injectability,hardening ability through a low-temperature setting reaction and moldability.Thereafter numerous researches have been performed to enhance the properties of CPCs.Nonetheless,low mechanical performance of CPCs limits their clinical application in load bearing regions of bone.Also,the in vivo resorption and replacement of CPC with new bone tissue is still controversial,thus further improvements of high clinical importance are required.Bioactive glasses(BGs)are biocompatible and able to bond to bone,stimulating new bone growth while dissolving over time.In the last decades extensive research has been performed analyzing the role of BGs in combination with different CaPs.Thus,the focal point of this review paper is to summarize the available research data on how injectable CPC properties could be improved or affected by the addition of BG as a secondary powder phase.It was found that despite the variances of setting time and compressive strength results,desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs.The published data also revealed that the degradation rate of CPCs is significantly improved by BG addition.Moreover,the presence of BG in CPCs improves the in vitro osteogenic differentiation and cell response as well as the tissue-material interaction in vivo.
基金This work was founded by the“AO Trauma Deutschland Nachwuchsf¨orderung”(PK)as well as the German Research Foundation(DFGproject no.449121904)(AL,MG).
文摘Calcium phosphate cements (CPC) are currently widely used bone replacement materials with excellent bioactivity, but have considerable disadvantages like slow degradation. For critical-sized defects, however, an improved degradation is essential to match the tissue regeneration, especially in younger patients who are still growing. We demonstrate that a combination of CPC with mesoporous bioactive glass (MBG) particles led to an enhanced degradation in vitro and in a critical alveolar cleft defect in rats. Additionally, to support new bone formation the MBG was functionalized with hypoxia conditioned medium (HCM) derived from rat bone marrow stromal cells. HCM-functionalized scaffolds showed an improved cell proliferation and the highest formation of new bone volume. This highly flexible material system together with the drug delivery capacity is adaptable to patient specific needs and has great potential for clinical translation.