Objective: Calcium-sensing receptors (CaSRs) are G-protein coupled receptors which maintain systemic calcium homeostasis and participate in hormone secretion, activation of ion channels, cell apoptosis, proliferati...Objective: Calcium-sensing receptors (CaSRs) are G-protein coupled receptors which maintain systemic calcium homeostasis and participate in hormone secretion, activation of ion channels, cell apoptosis, proliferation, and differentiation. Previous studies have shown that CaSRs induce apoptosis in isolated adult rat heart and in normal neonatal rat cardiomyocytes by G-protein-PLC-IP3 signaling transduction. However, little knowledge is presently available concerning the role of CaSRs in the apoptosis induced by ischemia and reperfusion in neonatal cardiomyocytes. Methods: Primary neonatal rat ventricular cardiomyocytes were incubated in ischemiamimetic solution for 2 h, and then re-incubated in normal culture medium for 24 h to establish a model of simu- lated ischemia/reperfusion (I/R). Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase- mediated dUTP nick end labeling (TUNEL). The expression of CaSRs mRNA was detected by real-time reverse transcription polymerase chain reaction (RT-PCR). In addition, the expressions of caspase-3 and Bcl-2 were analyzed by western blot. Results: The simulated I/R enhanced the expression of CaSRs and cardiomyocyte apoptosis. GdCl3, a specific activator of CaSRs, further increased the expression of CaSRs and cardiomyocyte apoptosis, along with up-regulation of caspase-3 and down-regulation of Bcl-2. Conclusion: CaSRs are associated with UR injury and apoptosis in neonatal rat ventricular cardiomyocytes via suppressing Bcl-2 and promoting caspase-3 expression.展开更多
AIM: To test the hypothesis that calcium sensing receptor (CASR) polymorphisms are associated with chronic pancreatitis (CP), and to determine whether serine protease inhibitor Kazal 1type (SPINK1) N34S or alco...AIM: To test the hypothesis that calcium sensing receptor (CASR) polymorphisms are associated with chronic pancreatitis (CP), and to determine whether serine protease inhibitor Kazal 1type (SPINK1) N34S or alcohol are necessary co-factors in its etiology. METHODS: Initially, 115 subjects with pancreatitis and 66 controls were evaluated, of whom 57 patients and 21 controls were predetermined to carry the high-risk SPINK1 N34S polymorphism. We sequenced CASR gene exons 2, 3, 4, 5 and 7, areas containing the majority of reported polymorphisms and novel mutations. Based on the initial results, we added 223 patients and 239 controls to analyze three common nonsynonymous single nucleotide polymorphisms (SNPs) in exon 7 (A986S, R990G, and Q1011E). RESULTS: The CASR exon 7 R990G polyrnorphism was significantly associated with CP (OR, 2.01; 95% CI, 1.12-3.59; P = 0.015). The association between CASR R990G and CP was stronger in subjects who reported moderate or heavy alcohol consumption (OR, 3.12; 95% CI, 1.14-9.13; P = 0.018). There was no association between the various CASR genotypes and SPINK1 N34S in pancreatitis. None of the novel CASR polymorphisms reported from Germany and India was detected. CONCLUSION: Our United States-based study confirmed an association of CASR and CP and for the first time demonstrated that CASR R990G is a significant risk factor for CP. We also conclude that the risk of CP with CASR R990G is increased in subjects with moderate to heavy alcohol consumption.展开更多
Astrocytes' roles in late-onset Alzheimer's disease (LOAD) promotion are important, since they survive soluble or fibrillar amyloid-β peptides (Aβs) neurotoxic effects, undergo alterations of intracellular and...Astrocytes' roles in late-onset Alzheimer's disease (LOAD) promotion are important, since they survive soluble or fibrillar amyloid-β peptides (Aβs) neurotoxic effects, undergo alterations of intracellular and intercellular Ca2+ signaling and gliotransmitters release via the Aβ/a7-nAChR (αT-nicotinic acetylcholine receptor) signaling, and overproduce/oversecrete newly synthesized Aβ42 oligomers, NO, and VEGF-A via the Aβ/CaSR (calcium-sensing receptor) signaling. Recently, it was suggested that the NMDAR (N-methyl-D-aspartate receptor) inhibitor nitromemantine would block the synapse-destroying effects of Aβ/α7-nAChR signaling. Yet, this and the progressive extracellular accrual and spreading of Aβ42 oligomers would be stopped well upstream by NPS 2143, an allosteric CaSR antagonist (calcilytic).展开更多
Background:The mechanism concerning gingival overgrowth as a side effect of phenytoin, a therapeutic drug for epilepsy has been still unclear. As one of mechanisms, by measuring the intracellular calcium concentration...Background:The mechanism concerning gingival overgrowth as a side effect of phenytoin, a therapeutic drug for epilepsy has been still unclear. As one of mechanisms, by measuring the intracellular calcium concentration ([Ca2+]i) of the gingival fibroblasts, it has been advocated that there is relationship between gingival overgrowth and phenytoin-induced alterations in the [Ca2+]i in gingival fibroblasts. To confirm that phenytoin elevates the [Ca2+]i, and if so, to find out its mode of action. Methods: The [Ca2+]i was measured with the Ca2+-sensitive fluorescent dye fura-2/AM. Cells were soaked in a flexiperm chamber and perfused by a saline. Drugs at appropriate concentrations were added to the perfusate. Results: Phenytoin concentration-dependently elevated the [Ca2+]i. NPS2390, a calcium-sensing receptor (CaSR) blocker, significantly suppressed the phenytoin-induced [Ca2+]i elevation. U73122, a phospholipase C (PLC) inhibitor, inihibited the phenytoin-induced [Ca2+]i elevation. TMB-8, a blocker of inositol triphophate (IP3) receptors in ER, significantly depressed the phenytoin-induced [Ca2+]i elevation. m-3M3FBS, a PLC activator, enhanced the phenytoin-induced [Ca2+]i elevation. From the findings obtained, it is discussed as follows: The Ca2+-free saline and NPS2390, a CaSR antagonist, inhibited the phenytoin-induced [Ca2+]i rise;These results indicate that CaSRs exist in gingival fibroblasts and that CaSRs are involved in the phenytoin-induced [Ca2+]i rise;U73122 and TMB-8 depressed the phenytoin-induced [Ca2+]i elevation and furthermore, m-3M3FBS enhanced the phenytoin-induced [Ca2+]i elevation, showing that the Ca2+ release from the ER is involved in the phenytoin-induced [Ca2+]i elevation. Conclusion: We have concluded that phenytoin elevates the [Ca2+]i by activating CaSRs and enhancing the Ca2+ release from the Ca2+ stores in gingival fibroblasts.展开更多
Male infertility caused by testicular damage is one of the complications of diabetes mellitus. The calcium-sensing receptor (CaSR) is expressed in testicular tissues and plays a pivotal role in calcium homeostasis b...Male infertility caused by testicular damage is one of the complications of diabetes mellitus. The calcium-sensing receptor (CaSR) is expressed in testicular tissues and plays a pivotal role in calcium homeostasis by activating cellular signaling pathways, but its role in testicular damage induced by diabetes remains unclear. A diabetic model was established by a single intraperitoneal injection of streptozotocin (STZ, 40 mg kg-1) in Wistar rats. Animals then received GdCl3 (an agonist of CaSR, 8.67 mg kg-1), NPS-2390 (an antagonist of CaSR, 0.20 g kg-~), or a combination of both 2 months after STZ injection. Diabetic rats had significantly lower testes weights and serum levels of testosterone compared to healthy rats, indicating testicular damage and dysfunction in STZ-induced diabetic rats. Compared with healthy controls, the testicular tissues of diabetic rats overexpressed the CaSR protein and had higher levels of malondialdehyde (MDA), lower superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and higher numbers of apoptotic germ cells. The testicular tissues from diabetic rats also expressed lower levels of Bcl-2 and higher levels of Bax and cleaved caspase-3 in addition to higher phosphorylation rates of c-Jun NH2-terminal protein kinase (JNK), p38, and extracellular signaling-regulated kinase (ERK) 1/2. The above parameters could be further increased or aggravated by the administration of GdCI3, but could be attenuated by injection of NPS-2390. In conclusion, the present results indicate that CaSR activation participates in diabetes-induced testicular damage, implying CaSR may be a potential target for protective strategies against diabetes-induced testicular damage and could help to prevent infertility in diabetic men.展开更多
OBJECTIVE To investigate the inhibitory effect and mechanism of sodium ferulate(SF)on myocardial hypertrophy in spontaneously hypertensive(SHR).METHODS Forty 14-week-old SHR male rats were randomly divided into model ...OBJECTIVE To investigate the inhibitory effect and mechanism of sodium ferulate(SF)on myocardial hypertrophy in spontaneously hypertensive(SHR).METHODS Forty 14-week-old SHR male rats were randomly divided into model group(SHR,receive distilled water)and SF treatment groups(SF 20,40 and 80 mg·kg^-1 per day,respectively).Age-matched male Wistar-Kyoto(WKY)rats gavaged with distilled water served as controls.After 12 weeks of treatment,the effects of SF on cardiac hypertrophy were evaluated using echocardiographic measurement,pathological analysis and the expression of atrial natriuretic peptide(ANP),myosin heavy chainβ(β-MHC)-a gene related to myocardial hypertrophy.In order to explore the mechanism of SF on myocardial hypertrophy,the calcium-sensing receptor(CaSR),calcineurin(CaN),nuclear factor of activated T cell 3(NFAT3),phosphorylation NFAT3(p-NFAT3),zinc finger transcription factor(GATA4),phosphorylation GATA4(p-GATA4),protein kinase Cβ(PKC-β),Raf-1,extracellular regulated protein kinase 1/2(ERK 1/2),phosphorylation ERK1/2(p-ERK 1/2)and mitogen-activated protein kinase phosphatase-1(MKP-1)were detected.RESULTS The myocardial hypertrophy parameters,myocardial cell cross section area,left ventricular wall thickness and expression of ANP and β-MHC,CaSR,CaN,NFAT3,p-GATA4,PKC-β,Raf-1,and p-ERK 1/2 were significantly increased,while the left ventricular cavity was significantly smaller,expression of p-NFAT3 and MKP-1 were significantly decreased,meanwhile,the ultra⁃structure of cardiomyocytes was significantly damaged in 26-week-old SHR rats.Notably,SF significantly ameliorated myocardial hyper⁃trophy in 26-week-old SHR rats;suppressed the overexpression of ANP,β-MHC,CaSR,CaN,NFAT3,p-GATA4,PKC-β,Raf-1,and p-ERK 1/2 and increased the expression of p-NFAT3 and MKP-1.CONCLUSION SF can inhibit cardiac hypertrophy in SHR rats,and the mechanism may be related to the inhibition of CaSR mediated signaling pathway.展开更多
基金supported by a grant from the Nature Science Foundation of the Education Department of Jiangsu Province(No.06kjb320006)
文摘Objective: Calcium-sensing receptors (CaSRs) are G-protein coupled receptors which maintain systemic calcium homeostasis and participate in hormone secretion, activation of ion channels, cell apoptosis, proliferation, and differentiation. Previous studies have shown that CaSRs induce apoptosis in isolated adult rat heart and in normal neonatal rat cardiomyocytes by G-protein-PLC-IP3 signaling transduction. However, little knowledge is presently available concerning the role of CaSRs in the apoptosis induced by ischemia and reperfusion in neonatal cardiomyocytes. Methods: Primary neonatal rat ventricular cardiomyocytes were incubated in ischemiamimetic solution for 2 h, and then re-incubated in normal culture medium for 24 h to establish a model of simu- lated ischemia/reperfusion (I/R). Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase- mediated dUTP nick end labeling (TUNEL). The expression of CaSRs mRNA was detected by real-time reverse transcription polymerase chain reaction (RT-PCR). In addition, the expressions of caspase-3 and Bcl-2 were analyzed by western blot. Results: The simulated I/R enhanced the expression of CaSRs and cardiomyocyte apoptosis. GdCl3, a specific activator of CaSRs, further increased the expression of CaSRs and cardiomyocyte apoptosis, along with up-regulation of caspase-3 and down-regulation of Bcl-2. Conclusion: CaSRs are associated with UR injury and apoptosis in neonatal rat ventricular cardiomyocytes via suppressing Bcl-2 and promoting caspase-3 expression.
基金NIH R01 DK061451 (DCW) and Andrew and Michelle Aloe
文摘AIM: To test the hypothesis that calcium sensing receptor (CASR) polymorphisms are associated with chronic pancreatitis (CP), and to determine whether serine protease inhibitor Kazal 1type (SPINK1) N34S or alcohol are necessary co-factors in its etiology. METHODS: Initially, 115 subjects with pancreatitis and 66 controls were evaluated, of whom 57 patients and 21 controls were predetermined to carry the high-risk SPINK1 N34S polymorphism. We sequenced CASR gene exons 2, 3, 4, 5 and 7, areas containing the majority of reported polymorphisms and novel mutations. Based on the initial results, we added 223 patients and 239 controls to analyze three common nonsynonymous single nucleotide polymorphisms (SNPs) in exon 7 (A986S, R990G, and Q1011E). RESULTS: The CASR exon 7 R990G polyrnorphism was significantly associated with CP (OR, 2.01; 95% CI, 1.12-3.59; P = 0.015). The association between CASR R990G and CP was stronger in subjects who reported moderate or heavy alcohol consumption (OR, 3.12; 95% CI, 1.14-9.13; P = 0.018). There was no association between the various CASR genotypes and SPINK1 N34S in pancreatitis. None of the novel CASR polymorphisms reported from Germany and India was detected. CONCLUSION: Our United States-based study confirmed an association of CASR and CP and for the first time demonstrated that CASR R990G is a significant risk factor for CP. We also conclude that the risk of CP with CASR R990G is increased in subjects with moderate to heavy alcohol consumption.
文摘Astrocytes' roles in late-onset Alzheimer's disease (LOAD) promotion are important, since they survive soluble or fibrillar amyloid-β peptides (Aβs) neurotoxic effects, undergo alterations of intracellular and intercellular Ca2+ signaling and gliotransmitters release via the Aβ/a7-nAChR (αT-nicotinic acetylcholine receptor) signaling, and overproduce/oversecrete newly synthesized Aβ42 oligomers, NO, and VEGF-A via the Aβ/CaSR (calcium-sensing receptor) signaling. Recently, it was suggested that the NMDAR (N-methyl-D-aspartate receptor) inhibitor nitromemantine would block the synapse-destroying effects of Aβ/α7-nAChR signaling. Yet, this and the progressive extracellular accrual and spreading of Aβ42 oligomers would be stopped well upstream by NPS 2143, an allosteric CaSR antagonist (calcilytic).
文摘Background:The mechanism concerning gingival overgrowth as a side effect of phenytoin, a therapeutic drug for epilepsy has been still unclear. As one of mechanisms, by measuring the intracellular calcium concentration ([Ca2+]i) of the gingival fibroblasts, it has been advocated that there is relationship between gingival overgrowth and phenytoin-induced alterations in the [Ca2+]i in gingival fibroblasts. To confirm that phenytoin elevates the [Ca2+]i, and if so, to find out its mode of action. Methods: The [Ca2+]i was measured with the Ca2+-sensitive fluorescent dye fura-2/AM. Cells were soaked in a flexiperm chamber and perfused by a saline. Drugs at appropriate concentrations were added to the perfusate. Results: Phenytoin concentration-dependently elevated the [Ca2+]i. NPS2390, a calcium-sensing receptor (CaSR) blocker, significantly suppressed the phenytoin-induced [Ca2+]i elevation. U73122, a phospholipase C (PLC) inhibitor, inihibited the phenytoin-induced [Ca2+]i elevation. TMB-8, a blocker of inositol triphophate (IP3) receptors in ER, significantly depressed the phenytoin-induced [Ca2+]i elevation. m-3M3FBS, a PLC activator, enhanced the phenytoin-induced [Ca2+]i elevation. From the findings obtained, it is discussed as follows: The Ca2+-free saline and NPS2390, a CaSR antagonist, inhibited the phenytoin-induced [Ca2+]i rise;These results indicate that CaSRs exist in gingival fibroblasts and that CaSRs are involved in the phenytoin-induced [Ca2+]i rise;U73122 and TMB-8 depressed the phenytoin-induced [Ca2+]i elevation and furthermore, m-3M3FBS enhanced the phenytoin-induced [Ca2+]i elevation, showing that the Ca2+ release from the ER is involved in the phenytoin-induced [Ca2+]i elevation. Conclusion: We have concluded that phenytoin elevates the [Ca2+]i by activating CaSRs and enhancing the Ca2+ release from the Ca2+ stores in gingival fibroblasts.
文摘Male infertility caused by testicular damage is one of the complications of diabetes mellitus. The calcium-sensing receptor (CaSR) is expressed in testicular tissues and plays a pivotal role in calcium homeostasis by activating cellular signaling pathways, but its role in testicular damage induced by diabetes remains unclear. A diabetic model was established by a single intraperitoneal injection of streptozotocin (STZ, 40 mg kg-1) in Wistar rats. Animals then received GdCl3 (an agonist of CaSR, 8.67 mg kg-1), NPS-2390 (an antagonist of CaSR, 0.20 g kg-~), or a combination of both 2 months after STZ injection. Diabetic rats had significantly lower testes weights and serum levels of testosterone compared to healthy rats, indicating testicular damage and dysfunction in STZ-induced diabetic rats. Compared with healthy controls, the testicular tissues of diabetic rats overexpressed the CaSR protein and had higher levels of malondialdehyde (MDA), lower superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and higher numbers of apoptotic germ cells. The testicular tissues from diabetic rats also expressed lower levels of Bcl-2 and higher levels of Bax and cleaved caspase-3 in addition to higher phosphorylation rates of c-Jun NH2-terminal protein kinase (JNK), p38, and extracellular signaling-regulated kinase (ERK) 1/2. The above parameters could be further increased or aggravated by the administration of GdCI3, but could be attenuated by injection of NPS-2390. In conclusion, the present results indicate that CaSR activation participates in diabetes-induced testicular damage, implying CaSR may be a potential target for protective strategies against diabetes-induced testicular damage and could help to prevent infertility in diabetic men.
基金National Natural Science Foundation of China(81860732)Scientific and Technological Projects for Social Development in Guizhou Province of China([2011]3036)the State Key Laboratory of Cardiovascular Disease(2017kf-03)
文摘OBJECTIVE To investigate the inhibitory effect and mechanism of sodium ferulate(SF)on myocardial hypertrophy in spontaneously hypertensive(SHR).METHODS Forty 14-week-old SHR male rats were randomly divided into model group(SHR,receive distilled water)and SF treatment groups(SF 20,40 and 80 mg·kg^-1 per day,respectively).Age-matched male Wistar-Kyoto(WKY)rats gavaged with distilled water served as controls.After 12 weeks of treatment,the effects of SF on cardiac hypertrophy were evaluated using echocardiographic measurement,pathological analysis and the expression of atrial natriuretic peptide(ANP),myosin heavy chainβ(β-MHC)-a gene related to myocardial hypertrophy.In order to explore the mechanism of SF on myocardial hypertrophy,the calcium-sensing receptor(CaSR),calcineurin(CaN),nuclear factor of activated T cell 3(NFAT3),phosphorylation NFAT3(p-NFAT3),zinc finger transcription factor(GATA4),phosphorylation GATA4(p-GATA4),protein kinase Cβ(PKC-β),Raf-1,extracellular regulated protein kinase 1/2(ERK 1/2),phosphorylation ERK1/2(p-ERK 1/2)and mitogen-activated protein kinase phosphatase-1(MKP-1)were detected.RESULTS The myocardial hypertrophy parameters,myocardial cell cross section area,left ventricular wall thickness and expression of ANP and β-MHC,CaSR,CaN,NFAT3,p-GATA4,PKC-β,Raf-1,and p-ERK 1/2 were significantly increased,while the left ventricular cavity was significantly smaller,expression of p-NFAT3 and MKP-1 were significantly decreased,meanwhile,the ultra⁃structure of cardiomyocytes was significantly damaged in 26-week-old SHR rats.Notably,SF significantly ameliorated myocardial hyper⁃trophy in 26-week-old SHR rats;suppressed the overexpression of ANP,β-MHC,CaSR,CaN,NFAT3,p-GATA4,PKC-β,Raf-1,and p-ERK 1/2 and increased the expression of p-NFAT3 and MKP-1.CONCLUSION SF can inhibit cardiac hypertrophy in SHR rats,and the mechanism may be related to the inhibition of CaSR mediated signaling pathway.