In order to expand the advantages of strong durability and high compressive strength of calcium silicate hydrates(C-S-H),at the same time to make up for the poor early mechanical strength of magnesium silicate hydrate...In order to expand the advantages of strong durability and high compressive strength of calcium silicate hydrates(C-S-H),at the same time to make up for the poor early mechanical strength of magnesium silicate hydrates (M-S-H),we present the features and advantages of C-S-H and M-S-H and a comprehensive review of the progress on CaO-MgO-SiO_(2)-H_(2)O.Moreover,we systematically describe natural calcium and magnesium silicate minerals and thermodynamic properties of CaO-MgO-SiO_(2)-H_(2)O.The effect of magnesium on C-S-H and calcium on M-S-H is summarized deeply;the formation and structural feature of CaO-MgO-SiO_(2)-H_(2)O is also explained in detail.Finally,the development of calcium and magnesium silicate hydrates in the future is pointed out,and the further research is discussed and estimated.展开更多
Calcium silicate hydrate(C-S-H)is the mainly strength source of cement-based materials,but there is little basic research.In this paper,molecular dynamics method is applied to analyze the multi-scale tensile strength ...Calcium silicate hydrate(C-S-H)is the mainly strength source of cement-based materials,but there is little basic research.In this paper,molecular dynamics method is applied to analyze the multi-scale tensile strength and tensile strain of C-S-H layered materials under the condition of external physical fields(temperature and strain rate).The results show that the tensile strength and strain of C-S-H model decrease with temperature raises.The temperature(from 1 K to 600 K)has obvious influence on the tensile strain and strength of C-S-H layered materials.In addition,at(0.00025 ps^(-1)-0.001 ps^(-1)),the tensile strain and strength of C-S-H layered materials are less sensitive to strain rate.The whole model is closer to a 3-dimensional deformation.However,at(0.001 ps^(-1)-0.005 ps^(-1)),the dynamic load effect begins to increase,and the work done by the load per unit time increased.The tensile strain and strength of C-S-H layered materials indicates intensified by the change of strain rate.The energies are randomly distributed in the system,not concentrated in a certain area.展开更多
The interface properties between hydrated cement paste(hcp)and aggregates largely determine the various performances of concrete.In this work,molecular dynamics simulations were employed to explore the atomistic inter...The interface properties between hydrated cement paste(hcp)and aggregates largely determine the various performances of concrete.In this work,molecular dynamics simulations were employed to explore the atomistic interaction mechanisms between the commonly used aggregate phase calcite/silica and calcium silicate hydrates(C-S-H),as well as the effect of moisture.The results suggest that the C-S-H/calcite interface is relatively strong and stable under both dry and moist conditions,which is caused by the high-strength interfacial connections formed between calcium ions from calcite and high-polarity non-bridging oxygen atoms from the C-S-H surface.Silica can be also adsorbed on the dry C-S-H surface by the H-bonds;however,the presence of water molecules on the interface may substantially decrease the affinities.Furthermore,the dynamics interface separation tests of C-S-H/aggregates were also implemented by molecular dynamics.The shape of the calculated stress-separation distance curves obeys the quasi-static cohesive law obtained experimentally.The moisture conditions and strain rates were found to affect the separation process of C-S-H/silica.A wetter interface and smaller loading rate may lead to a lower adhesion strength.The mechanisms interpreted here may shed new lights on the understandings of hcp/aggregate interactions at a nano-length scale and creation of high performance cementitious materials.展开更多
Hydrothermal treatment has been widely applied in the synthesis of well crystalline calcium silicate hydrate(CSH), such as tobermorite and xonotlite. However, both morphology and crystallinity of CSH are greatly aff...Hydrothermal treatment has been widely applied in the synthesis of well crystalline calcium silicate hydrate(CSH), such as tobermorite and xonotlite. However, both morphology and crystallinity of CSH are greatly affected by the conditions of hydrothermal treatment including siliceous materials, temperature increase rate and isothermal periods. In this study, the influence of hydrothermal conditions on the growth of nano-crystalline CSH was investigated based on XRD analysis. Results showed that siliceous materials with amorphous nature(i e, nano silica powder) are beneficial to synthesize pure amorphous CSH, while the use of more crystallized siliceous materials(i e, diatomite and quartz powder) leads to producing crystalline CSH. Results also indicate that the formation of tobermorite and xonotlite is greatly affected by the temperature rise rate during hydrothermal treatment.展开更多
Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in...Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in soil. The present study examined the effect of PS on pH, cadmium transformation and cadmium solubility in Andosol and Alluvial soil, and also compared its effects with CaCO3, acidic porous hydrated calcium silicate (APS) and silica gel. Soil cadmium was operationally fractionationed into exchangeable (Exch), bound to carbonates (Carb), bound to iron and manganese oxides (FeMnOx), bound to organic matters (OM) and residual (Res) fraction. Application of PS and CaCO3 at hig rates enhanced soil pH, while APS and silica gel did not obviously change soil pH. PS and CaCO3 also increased the FeMnOx-Cd in Andosol and Carb-Cd in Alluvial soil, thus reducing the Exch-Cd in the tested soils. However, PS was less effective than CaCO3 at the same application rate. Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel. There were no obvious differences in the solubility of cadmium in soils treated with PS, APS, silica gel and CaCO3 except Andosol treated 2.0% CaCO3 at the same pH of soil-CaC12 suspensions. These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS.展开更多
The samples of the C-S-H series were synthesized by hydrothermal reaction of fumed silica, CaO and deionized water at initial C/S ratios between 1.0-1.7. Phase composition and structural and morphology characteristics...The samples of the C-S-H series were synthesized by hydrothermal reaction of fumed silica, CaO and deionized water at initial C/S ratios between 1.0-1.7. Phase composition and structural and morphology characteristics of C-S-H samples were analyzed by XRD, IR and SEM. The experimental results showed that the d-spacing of (002), (110) and (020) decreased, the d-spacing of (200) increased, and the d-spacing of (310) varied randomly, the polymerization of silica tetrahedra of C-S-H decreased, and morphology of C-S-H samples varied from sheet shapes to long reticular fibers as C/S ratio increased.展开更多
The feasibility of utilizing molybdenum tailing and diatomite as siliceous materials to prepare calcium silicate board was explored.The influences of molybdenum tailing/diatomite proportion on hydration characteristic...The feasibility of utilizing molybdenum tailing and diatomite as siliceous materials to prepare calcium silicate board was explored.The influences of molybdenum tailing/diatomite proportion on hydration characteristics,thermal conductivity,water absorption,flexural strength and moisture adsorption-desorption property of calcium silicate board were investigated in detail.The experimental results reveal that molybdenum tailing is environmentally friendly to prepare building materials.The main hydration products in calcium silicate board under autoclaved condition are C-S-H with low crystallinity and tobermorite.Molybdenum tailing is favorable to the formation of tobermorite.The flexural strength and bulk density of the calcium silicate board gradually increase when the content of molybdenum tailing increases.Netlike C-S-H is formed with the increase of diatomite content during autoclaved curing process,resulting in the enhancement of moisture adsorptiondesorption performance and the reduction of thermal conductivity.The optimal content of molybdenum tailing is 20%,furthermore,the flexual strength and thermal conductivity of calcium silicate board at this content meet the Chinese standard JC/T564.1-2008.展开更多
C-S-H series are synthesized at different temperatures and ages by pozzolanic reaction.The change of particle size distribution,phase composition,morphology and nanostructure of C-S-H with temperatures and ages,and th...C-S-H series are synthesized at different temperatures and ages by pozzolanic reaction.The change of particle size distribution,phase composition,morphology and nanostructure of C-S-H with temperatures and ages,and the effects of C-S-H seeds and seeds parameters on the hydration behavior and mechanical properties development of cement were investigated by DLS,XRD,SEM,^(29)Si NMR,TAM-air isothermal calorimeter and mechanical properties test.The results show that the particle size,crystallinity,basal spacing and Q^(2)/Q^(1) ratio of C-S-H increases with the increase of synthesis temperature and age.The addition of synthesized C-S-H seeds to cement pastes results in the strong acceleration effect on cement hydration and significant improvement of the early strength of cement paste and mortar.The 1 day-C-S-H seeds synthesized at room temperature can increase the strength of cement paste by about 30 MPa at 12 h.The effect does not show a very regular change with the increase of the temperature and age of seeds synthesis.Considering the effect of C-S-H seeds on the hydration and mechanical properties of cement,and economy and short cycle of seeds synthesis,the C-S-H seeds synthesized at room temperature for 1 day or 55 ℃ water bath for 12 hours is recommended..展开更多
Coal fly ash is a typical secondary aluminum/silicon resource.The preparation of zeolite-type absorbent is a potential way for its value-added utilization,while the purity and adsorption property of zeolite are limite...Coal fly ash is a typical secondary aluminum/silicon resource.The preparation of zeolite-type absorbent is a potential way for its value-added utilization,while the purity and adsorption property of zeolite are limited due to the occurrence of side reactions in the synthesis process.In this study,a designated composite consisted of crystalline zeolites and amorphous calcium silicate hydrate was selected,which was direct synthesized from fly ash under conditions of a Ca/Si molar ratio of 0.8,an initial NaOH concentration of 0.5 mol/L,a hydrothermal temperature of 170℃and a liquid–solid ratio of 15 mL/g.The results indicated that this composite had superior adsorption property for a variety of heavy metals,which was based on the exchange of calcium and sodium ions in zeolites and calcium silicate hydrate.Its adsorption capacities for Pb^(2+),Ni^(2+),Cd^(2+),Zn^(2+),Cu^(2+)and Cr^(3+)attained 409.4,222.4,147.5,93.2,101.1 and 157.0 mg/g,respectively,in single solution with a pH of 4.5.After regulating the synthesis conditions,the transformation of amorphous calcium silicate hydrate into crystallized tobermorite weakened the adsorption capacity of the composite.Besides,due to the competitive adsorption in a multiple ions solution,the adsorption capacities for these heavy metals had a reduction.展开更多
Using calcium hydroxide and sodium silicate as starting materials, two kinds of calcium silicate hydrates, CaO·SiO2·H2O and 2CaO·SiO2·1.17H2O, were hydro-thermally synthesized at 120℃.The reacti...Using calcium hydroxide and sodium silicate as starting materials, two kinds of calcium silicate hydrates, CaO·SiO2·H2O and 2CaO·SiO2·1.17H2O, were hydro-thermally synthesized at 120℃.The reaction rule of calcium silicate hydrate in aluminate solution was investigated. The result shows that CaO·SiO2·H2O is more stable than 2CaO·SiO2·1.17H2O in aluminate solution and its stability increases with the increase of reaction temperature but decreases with the increase of caustic concentration. The reaction between calcium silicate hydrate and aluminate solution is mainly through two routes. In the first case, Al replaces partial Si in calcium silicate hydrate, meanwhile 3CaO·Al2O3·xSiO2·(6-2x) H2O (hydro-garnet) is formed and some SiO2 enters the solution. In the second case, calcium silicate hydrate can react directly with aluminate solution, forming hydro- garnet and Na2O·Al2O3·2SiO2·nH2O (DSP). The desilication reaction of aluminate solution containing silicate could contribute partially to forming DSP.展开更多
Electrolytic manganese residue(EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrat...Electrolytic manganese residue(EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrate(EMR-CSH). The MnO2 is successfully synthesized from the metal cations extracted from EMR, which can effectively recycle the manganese in the EMR. By the combination of XRD, SEM and EDX analysis, the as-prepared MnO2 is found to exhibit a single-phase with the purity of 90.3%. Furthermore, EMR-CSH is synthesized from EMR via hydrothermal method. Based on the detailed analyses using XRD, FT-IR, FE-SEM, EDX and BET surface area measurement, the product synthesized under the optimum conditions(p H 12.0 and 100 °C) is identified to be a calcium silicate hydrate with a specific surface area of 205 m2/g incorporating the slag-derived metals(Al and Mg) in its structure. The as-synthesized material shows good adsorption properties for removal of Mn2+ and phosphate ions diluted in water, making it a promising candidate for efficient bulk wastewater treatment. This conversion process, which enables us to fabricate two different kinds of valuable materials from EMR at low cost and through convenient preparation steps, is surely beneficial from the viewpoint of the chemical and economical use of EMR.展开更多
This study aimed to improve the hydraulic potential properties of the slag. Therefore, a method of dynamic hydrothermal synthesis was applied to synthesize calcium silicate hydrate. The phases and nanostructures were ...This study aimed to improve the hydraulic potential properties of the slag. Therefore, a method of dynamic hydrothermal synthesis was applied to synthesize calcium silicate hydrate. The phases and nanostructures were characterized by XRD, FTIR, TEM, and BET nitrogen adsorption. The infl uence of alkalinity of steel slag on its structures and properties was discussed. The experimental results show that, the main product is amorphous calcium silicate hydrate gel with fl occulent or fi brous pattern with a BET specifi c surface area up to 77 m2/g and pore volume of 0.34 mL/g. Compared with low alkalinity steel slag, calcium silicate hydrate synthesized from higher alkalinity steel slag is prone to transform to tobermorite structure.展开更多
Cement hydration is the underlying mechanism for the strength development in cement-based materials.The structural and electronic properties of calcium silicates should be elucidated to reveal their difference in hydr...Cement hydration is the underlying mechanism for the strength development in cement-based materials.The structural and electronic properties of calcium silicates should be elucidated to reveal their difference in hydration reactivity.Here,we comprehensively comparedβ-C_(2)S and M_(3)-C_(3)S and investigated their structural properties and Bader charge in the unit cell,during surface reconstruction and after single water adsorption via density functional theory.We identified different types of atoms inβ-C_(2)S and M_(3)-C_(3)S by considering the bonding characteristics and Bader charge.We then divided the atoms into the following groups:forβ-C_(2)S,Ca and O atoms divided into two and four groups,respectively;for M_(3)-C_(3)S,Ca,O,and Si atoms divided into four,four,and three groups,respectively.Results revealed that the valence electron distribution on the surface was more uniform than that on the unit cell,indicating that some atoms became more reactive after surface relaxation.During water adsorption,the electrons ofβ-C_(2)S and M_(3)-C_(3)S were transferred from the surface to the adsorbed water molecules through position redistribution and bond formation/breaking.On this basis,we explained whyβ-C_(2)S and M_(3)-C_(3)S had activity differences.A type of O atom with special bond characteristics(no O–Si bonds)and high reactivity existed in the unit cell of M_(3)-C_(3)S.Bader charge analysis showed that the reactivity of Ca and O atoms was generally higher in M_(3)-C_(3)S than inβ-C_(2)S.Ca/O atoms had average valence electron numbers of6.437/7.550 inβ-C_(2)S and 6.481/7.537 in M_(3)-C_(3)S.Moreover,the number of electrons gained by water molecules in M_(3)-C_(3)S at the surface was higher than that inβ-C_(2)S.The average variations in the valence electrons of H_(2)O onβ-C_(2)S and M_(3)-C_(3)S were 0.041 and 0.226,respectively.This study further explains the differences in the hydration reactivity of calcium silicates and would be also useful for the design of highly reactive and environmentally friendly cements.展开更多
Structure and mechanical properties of Calcium silicate hydrate (C-S-H) at a molecular level act as "DNA" of cement-based construction materials.In order to understand loading resistance capability of C-S-H ...Structure and mechanical properties of Calcium silicate hydrate (C-S-H) at a molecular level act as "DNA" of cement-based construction materials.In order to understand loading resistance capability of C-S-H gel,research on molecular dynamics (MD) was carried out to simulate the uniaxial tension test on C-S-H model along x,y,and z directions.Due to the structure and dynamic differences of the layered structure,the C-S-H model demonstrates heterogeneous mechanical behavior.On an XY plane,the cohesive force can reach 4 GPa,which is mainly provided by the Ca-O and Si-O ionic-covalent bonds.The good plasticity of calcium silicate sheet is attributed to the silicate branch structure formation and the recovery role of interlayer calcium atoms.However,in z direction,C-S-H layers connected by the unstable H-bonds network,have the weakest tensile strength 2.2 GPa.This results in the brittle failure mode in z direction.The relatively low tensile strength and poor plasticity in z direction provides molecular insights into the tensile weakness of cement materials at macro-level.展开更多
At the molar ratio of CaO to SiO2 of 1, with calcium hydroxide and sodium silicate, calcium silicate hydrate was synthesized at 50, 100, 170 ℃, respectively. The results show that temperature favors the formation of ...At the molar ratio of CaO to SiO2 of 1, with calcium hydroxide and sodium silicate, calcium silicate hydrate was synthesized at 50, 100, 170 ℃, respectively. The results show that temperature favors the formation of calcium silicate hydrate with perfect structure. When calcium silicate hydrate reacts with caustic solution, the decomposition rate of calcium silicate hydrate increases with the increasing caustic concentration and decreases with the raising synthesis temperature and the prolongation of reaction time. The decomposition rate is all less than 1.2% in caustic solution, and XRD pattern of the residue after reaction with caustic solution is found as the same as that of original calcium silicate hydrate, which indicates the stable existence of calcium silicate hydrate in caustic solution. When reacted with soda solution, the decomposition rate increases with the increasing soda concentration and reaction time, while decreases with the synthesis temperature. The decomposition rate is more than 2% because (CaO·SiO2·H2O(CSH(Ⅰ)),) except (Ca5(OH)2Si6O16·4H2O) and (Ca6Si6O17(OH)2,) is decomposed. So the synthesis temperature and soda concentration should be controlled in the process of transformation of sodium aluminosilicate hydrate into calcium silicate hydrate.展开更多
The problems of traditional concrete such as brittleness,poor toughness and short service life of concrete engineering under acid rain or marine environment need to be solved urgently.Hydrated calcium silicate(C-S-H)i...The problems of traditional concrete such as brittleness,poor toughness and short service life of concrete engineering under acid rain or marine environment need to be solved urgently.Hydrated calcium silicate(C-S-H)is a key component to improve the mechanical properties and durability of concrete.However,the traditional method of concrete material design based on empirical models or comparative tests has become a bottleneck restricting the sustainable development of concrete.The synthesis method,molecular structure and properties of C-S-H were systematically described in this paper;The interface structure and interaction of graphene oxide/calcium silicate hydrate(C-S-H/GO)were discussed.On this basis,the saturated and unsaturated transport characteristics of ions and water molecules in C-S-H/GO nanochannels under the environment of ocean and acid rain were introduced.The contents of this review provide the basis for improving the multi-scale transmission theory and microstructure design of concrete.It has important guiding significance for analyzing and improving the service life of concrete in complex environment.展开更多
The time-dependent viscoelastic response of cement-based materials to applied deformation is far from fully understood at the atomic level.Calcium silicate hydrate(C-S-H),the main hydration product of Portland cement,...The time-dependent viscoelastic response of cement-based materials to applied deformation is far from fully understood at the atomic level.Calcium silicate hydrate(C-S-H),the main hydration product of Portland cement,is responsible for the viscoelastic mechanism of cement-based materials.In this study,a molecular model of C-S-H was developed to explain the stress relaxation characteristics of C-S-H at different initial deformation states,Ca/Si ratios,temperatures,and water contents,which cannot be accessed experimentally.The stress relaxation of C-S-H occurs regardless of whether it is subjected to initial shear,tensile,or compressive deformation,and shows a heterogeneous characteristic.Water plays a crucial role in the stress relaxation process.A large Ca/Si ratio and high temperature reduce the cohesion between the calcium-silicate layer and the interlayer region,and the viscosity of the interlayer region,thereby accelerating the stress relaxation of C-S-H.The effect of the hydrogen bond network and the morphology of C-S-H on the evolution of the stress relaxation characteristics of C-S-H at different water contents was elucidated by nonaffine mean squared displacement.Our results shed light on the stress relaxation characteristics of C-S-H from a microscopic perspective,bridging the gap between the microscopic phenomena and the underlying atomic-level mechanisms.展开更多
Composition, morphology, and structure of hydration products in hardened pastes of three kinds of blended cement(cement-silica fume, cement-quartz powder and cement-silica fume-quartz powder) hydrated under differen...Composition, morphology, and structure of hydration products in hardened pastes of three kinds of blended cement(cement-silica fume, cement-quartz powder and cement-silica fume-quartz powder) hydrated under different curing regimes(standard curing, 90 ℃ steam curing, 200 ℃ and 250 ℃ autoclave curing) were investigated by X-ray diffraction and field emission scanning electron microscope equipped with EDAX system. Results showed that the main hydration products in three kinds of hardened pastes under standard curing condition are all C-S-H gels, CH, and AFt. Under 90 ℃ steam curing condition, the main hydration products of cement-silica fume and cement-silica fume-quartz powder are C-S-H gels, whereas those of cement-quartz powder are C-S-H and CH. Under 200 or 250 ℃ autoclave curing condition, no obvious crystallized CH phase is found in hardened pastes of three kinds of blended cement, and C-S-H gels are transformed into one or more crystalline phases such as tobermorite, jennite, and xonotlite. The chemical composition and morphology of these crystalline phases depend on the composition of mixture and autoclave temperature.展开更多
Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plicati...Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plications.The present study advocates nano-calcium carbonate(NCC)material,a relatively unexplored nanomaterial additive,for stabilization of low-plasticity fine-grained soil having moderate organic content.The plasticity index,compaction,unconfined compressive strength(UCS),compressibility and permeability characteristics of the 0.2%,0.4%,0.6%and 0.8%NCC-treated soil,and untreated soil(as control),were determined,including investigations of the effect of up to 90-d curing on the UCS and permeability properties.In terms of UCS improvement,0.4%NCC addition was identified as the optimum dosage,mobilizing a UCS at 90-d curing of almost twice that for the untreated soil.For treated soil,particle aggregation arising from NCC addition initially produced an increase in the permeability coef-ficient,but its magnitude decreased for increased curing owing to calcium silicate hydrate(CSH)gel formation,although still remaining higher compared to the untreated soil for all dosages and curing periods investigated.Compression index decreased for all NCC-treated soil investigated.SEM micro-graphs indicated the presence of gel patches along with particle aggregation.X-ray diffraction(XRD)results showed the presence of hydration products,such as CSH.Significant increases in UCS are initially attributed to void filling and then because of CSH gel formation with increased curing.展开更多
基金Funded by Natural Science Basic Research Plan in Shaanxi Province of China (Nos.2021JQ-500, 2021GY-203, 2023-JCYB-096)Shaanxi Provincial Education Department of Key Scientific Research Plan (No.20JS079)Shaanxi Provincial Education Department of Normal Scientific Research Plan (No.20JK0727)。
文摘In order to expand the advantages of strong durability and high compressive strength of calcium silicate hydrates(C-S-H),at the same time to make up for the poor early mechanical strength of magnesium silicate hydrates (M-S-H),we present the features and advantages of C-S-H and M-S-H and a comprehensive review of the progress on CaO-MgO-SiO_(2)-H_(2)O.Moreover,we systematically describe natural calcium and magnesium silicate minerals and thermodynamic properties of CaO-MgO-SiO_(2)-H_(2)O.The effect of magnesium on C-S-H and calcium on M-S-H is summarized deeply;the formation and structural feature of CaO-MgO-SiO_(2)-H_(2)O is also explained in detail.Finally,the development of calcium and magnesium silicate hydrates in the future is pointed out,and the further research is discussed and estimated.
基金This work was supported by a Natural Science Foundation of Zhejiang Province(LQ23E080003)Innovative training program for college students.
文摘Calcium silicate hydrate(C-S-H)is the mainly strength source of cement-based materials,but there is little basic research.In this paper,molecular dynamics method is applied to analyze the multi-scale tensile strength and tensile strain of C-S-H layered materials under the condition of external physical fields(temperature and strain rate).The results show that the tensile strength and strain of C-S-H model decrease with temperature raises.The temperature(from 1 K to 600 K)has obvious influence on the tensile strain and strength of C-S-H layered materials.In addition,at(0.00025 ps^(-1)-0.001 ps^(-1)),the tensile strain and strength of C-S-H layered materials are less sensitive to strain rate.The whole model is closer to a 3-dimensional deformation.However,at(0.001 ps^(-1)-0.005 ps^(-1)),the dynamic load effect begins to increase,and the work done by the load per unit time increased.The tensile strain and strength of C-S-H layered materials indicates intensified by the change of strain rate.The energies are randomly distributed in the system,not concentrated in a certain area.
基金Projects(6512009004A,51908119,U1706222)supported by the National Natural Science Foundation of ChinaProject(BK20190367)supported by the Natural Science Foundation of Jiangsu Province,China。
文摘The interface properties between hydrated cement paste(hcp)and aggregates largely determine the various performances of concrete.In this work,molecular dynamics simulations were employed to explore the atomistic interaction mechanisms between the commonly used aggregate phase calcite/silica and calcium silicate hydrates(C-S-H),as well as the effect of moisture.The results suggest that the C-S-H/calcite interface is relatively strong and stable under both dry and moist conditions,which is caused by the high-strength interfacial connections formed between calcium ions from calcite and high-polarity non-bridging oxygen atoms from the C-S-H surface.Silica can be also adsorbed on the dry C-S-H surface by the H-bonds;however,the presence of water molecules on the interface may substantially decrease the affinities.Furthermore,the dynamics interface separation tests of C-S-H/aggregates were also implemented by molecular dynamics.The shape of the calculated stress-separation distance curves obeys the quasi-static cohesive law obtained experimentally.The moisture conditions and strain rates were found to affect the separation process of C-S-H/silica.A wetter interface and smaller loading rate may lead to a lower adhesion strength.The mechanisms interpreted here may shed new lights on the understandings of hcp/aggregate interactions at a nano-length scale and creation of high performance cementitious materials.
基金Funded by the Fundamental Research Funds for the Central Universities(No.2018CDXYCL0018)the National Natural Science Foundation of China(NSFC)(No.51678093)the National Youth Fund(No.51402029)
文摘Hydrothermal treatment has been widely applied in the synthesis of well crystalline calcium silicate hydrate(CSH), such as tobermorite and xonotlite. However, both morphology and crystallinity of CSH are greatly affected by the conditions of hydrothermal treatment including siliceous materials, temperature increase rate and isothermal periods. In this study, the influence of hydrothermal conditions on the growth of nano-crystalline CSH was investigated based on XRD analysis. Results showed that siliceous materials with amorphous nature(i e, nano silica powder) are beneficial to synthesize pure amorphous CSH, while the use of more crystallized siliceous materials(i e, diatomite and quartz powder) leads to producing crystalline CSH. Results also indicate that the formation of tobermorite and xonotlite is greatly affected by the temperature rise rate during hydrothermal treatment.
基金Project supported by the Grant-in-Aid for Scientific Research from Ministry of Education, Science, Sport, and Technology of Japan (No.13876015).
文摘Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in soil. The present study examined the effect of PS on pH, cadmium transformation and cadmium solubility in Andosol and Alluvial soil, and also compared its effects with CaCO3, acidic porous hydrated calcium silicate (APS) and silica gel. Soil cadmium was operationally fractionationed into exchangeable (Exch), bound to carbonates (Carb), bound to iron and manganese oxides (FeMnOx), bound to organic matters (OM) and residual (Res) fraction. Application of PS and CaCO3 at hig rates enhanced soil pH, while APS and silica gel did not obviously change soil pH. PS and CaCO3 also increased the FeMnOx-Cd in Andosol and Carb-Cd in Alluvial soil, thus reducing the Exch-Cd in the tested soils. However, PS was less effective than CaCO3 at the same application rate. Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel. There were no obvious differences in the solubility of cadmium in soils treated with PS, APS, silica gel and CaCO3 except Andosol treated 2.0% CaCO3 at the same pH of soil-CaC12 suspensions. These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS.
基金Funded by the National Basic Research Program of China (973 Program) (No. 2009CB623201)the National Natural Science Foundation of China (No.51072150)
文摘The samples of the C-S-H series were synthesized by hydrothermal reaction of fumed silica, CaO and deionized water at initial C/S ratios between 1.0-1.7. Phase composition and structural and morphology characteristics of C-S-H samples were analyzed by XRD, IR and SEM. The experimental results showed that the d-spacing of (002), (110) and (020) decreased, the d-spacing of (200) increased, and the d-spacing of (310) varied randomly, the polymerization of silica tetrahedra of C-S-H decreased, and morphology of C-S-H samples varied from sheet shapes to long reticular fibers as C/S ratio increased.
基金Funded by the National Key R&D Program of China(No.2017YFC0703206).
文摘The feasibility of utilizing molybdenum tailing and diatomite as siliceous materials to prepare calcium silicate board was explored.The influences of molybdenum tailing/diatomite proportion on hydration characteristics,thermal conductivity,water absorption,flexural strength and moisture adsorption-desorption property of calcium silicate board were investigated in detail.The experimental results reveal that molybdenum tailing is environmentally friendly to prepare building materials.The main hydration products in calcium silicate board under autoclaved condition are C-S-H with low crystallinity and tobermorite.Molybdenum tailing is favorable to the formation of tobermorite.The flexural strength and bulk density of the calcium silicate board gradually increase when the content of molybdenum tailing increases.Netlike C-S-H is formed with the increase of diatomite content during autoclaved curing process,resulting in the enhancement of moisture adsorptiondesorption performance and the reduction of thermal conductivity.The optimal content of molybdenum tailing is 20%,furthermore,the flexual strength and thermal conductivity of calcium silicate board at this content meet the Chinese standard JC/T564.1-2008.
基金Funded by National Key R&D Program of China(No.2017YFB0310001)the National Natural Science Foundation of China(Nos.51772226,51972249,51872216)。
文摘C-S-H series are synthesized at different temperatures and ages by pozzolanic reaction.The change of particle size distribution,phase composition,morphology and nanostructure of C-S-H with temperatures and ages,and the effects of C-S-H seeds and seeds parameters on the hydration behavior and mechanical properties development of cement were investigated by DLS,XRD,SEM,^(29)Si NMR,TAM-air isothermal calorimeter and mechanical properties test.The results show that the particle size,crystallinity,basal spacing and Q^(2)/Q^(1) ratio of C-S-H increases with the increase of synthesis temperature and age.The addition of synthesized C-S-H seeds to cement pastes results in the strong acceleration effect on cement hydration and significant improvement of the early strength of cement paste and mortar.The 1 day-C-S-H seeds synthesized at room temperature can increase the strength of cement paste by about 30 MPa at 12 h.The effect does not show a very regular change with the increase of the temperature and age of seeds synthesis.Considering the effect of C-S-H seeds on the hydration and mechanical properties of cement,and economy and short cycle of seeds synthesis,the C-S-H seeds synthesized at room temperature for 1 day or 55 ℃ water bath for 12 hours is recommended..
基金This work was supported by the National Natural Science Foun-dation of China(No.52174273)the Basic Science Center Project for National Natural Science Foundation of China(No.72088101)+1 种基金the Postdoctoral Science Foundation of China(No.2021TQ0370)the Science and Technology Innovation Program of Hunan Pro-vince(No.2021RC2003).
文摘Coal fly ash is a typical secondary aluminum/silicon resource.The preparation of zeolite-type absorbent is a potential way for its value-added utilization,while the purity and adsorption property of zeolite are limited due to the occurrence of side reactions in the synthesis process.In this study,a designated composite consisted of crystalline zeolites and amorphous calcium silicate hydrate was selected,which was direct synthesized from fly ash under conditions of a Ca/Si molar ratio of 0.8,an initial NaOH concentration of 0.5 mol/L,a hydrothermal temperature of 170℃and a liquid–solid ratio of 15 mL/g.The results indicated that this composite had superior adsorption property for a variety of heavy metals,which was based on the exchange of calcium and sodium ions in zeolites and calcium silicate hydrate.Its adsorption capacities for Pb^(2+),Ni^(2+),Cd^(2+),Zn^(2+),Cu^(2+)and Cr^(3+)attained 409.4,222.4,147.5,93.2,101.1 and 157.0 mg/g,respectively,in single solution with a pH of 4.5.After regulating the synthesis conditions,the transformation of amorphous calcium silicate hydrate into crystallized tobermorite weakened the adsorption capacity of the composite.Besides,due to the competitive adsorption in a multiple ions solution,the adsorption capacities for these heavy metals had a reduction.
文摘Using calcium hydroxide and sodium silicate as starting materials, two kinds of calcium silicate hydrates, CaO·SiO2·H2O and 2CaO·SiO2·1.17H2O, were hydro-thermally synthesized at 120℃.The reaction rule of calcium silicate hydrate in aluminate solution was investigated. The result shows that CaO·SiO2·H2O is more stable than 2CaO·SiO2·1.17H2O in aluminate solution and its stability increases with the increase of reaction temperature but decreases with the increase of caustic concentration. The reaction between calcium silicate hydrate and aluminate solution is mainly through two routes. In the first case, Al replaces partial Si in calcium silicate hydrate, meanwhile 3CaO·Al2O3·xSiO2·(6-2x) H2O (hydro-garnet) is formed and some SiO2 enters the solution. In the second case, calcium silicate hydrate can react directly with aluminate solution, forming hydro- garnet and Na2O·Al2O3·2SiO2·nH2O (DSP). The desilication reaction of aluminate solution containing silicate could contribute partially to forming DSP.
基金Project(21376273)supported by the National Natural Science Foundation of ChinaProject(2010FJ1011)supported by the Research Fund of Science and Technology of Hunan Province,China
文摘Electrolytic manganese residue(EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrate(EMR-CSH). The MnO2 is successfully synthesized from the metal cations extracted from EMR, which can effectively recycle the manganese in the EMR. By the combination of XRD, SEM and EDX analysis, the as-prepared MnO2 is found to exhibit a single-phase with the purity of 90.3%. Furthermore, EMR-CSH is synthesized from EMR via hydrothermal method. Based on the detailed analyses using XRD, FT-IR, FE-SEM, EDX and BET surface area measurement, the product synthesized under the optimum conditions(p H 12.0 and 100 °C) is identified to be a calcium silicate hydrate with a specific surface area of 205 m2/g incorporating the slag-derived metals(Al and Mg) in its structure. The as-synthesized material shows good adsorption properties for removal of Mn2+ and phosphate ions diluted in water, making it a promising candidate for efficient bulk wastewater treatment. This conversion process, which enables us to fabricate two different kinds of valuable materials from EMR at low cost and through convenient preparation steps, is surely beneficial from the viewpoint of the chemical and economical use of EMR.
基金Funded by the National Natural Science Foundation of China(No.50972171)the Project of International Science and Technology Cooperation(No.2009DFR50450)the Large Equipment Fund of Chongqing University(No.2012061511)
文摘This study aimed to improve the hydraulic potential properties of the slag. Therefore, a method of dynamic hydrothermal synthesis was applied to synthesize calcium silicate hydrate. The phases and nanostructures were characterized by XRD, FTIR, TEM, and BET nitrogen adsorption. The infl uence of alkalinity of steel slag on its structures and properties was discussed. The experimental results show that, the main product is amorphous calcium silicate hydrate gel with fl occulent or fi brous pattern with a BET specifi c surface area up to 77 m2/g and pore volume of 0.34 mL/g. Compared with low alkalinity steel slag, calcium silicate hydrate synthesized from higher alkalinity steel slag is prone to transform to tobermorite structure.
基金financially supported by the National Natural Science Foundation of China(No.52004330)supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia。
文摘Cement hydration is the underlying mechanism for the strength development in cement-based materials.The structural and electronic properties of calcium silicates should be elucidated to reveal their difference in hydration reactivity.Here,we comprehensively comparedβ-C_(2)S and M_(3)-C_(3)S and investigated their structural properties and Bader charge in the unit cell,during surface reconstruction and after single water adsorption via density functional theory.We identified different types of atoms inβ-C_(2)S and M_(3)-C_(3)S by considering the bonding characteristics and Bader charge.We then divided the atoms into the following groups:forβ-C_(2)S,Ca and O atoms divided into two and four groups,respectively;for M_(3)-C_(3)S,Ca,O,and Si atoms divided into four,four,and three groups,respectively.Results revealed that the valence electron distribution on the surface was more uniform than that on the unit cell,indicating that some atoms became more reactive after surface relaxation.During water adsorption,the electrons ofβ-C_(2)S and M_(3)-C_(3)S were transferred from the surface to the adsorbed water molecules through position redistribution and bond formation/breaking.On this basis,we explained whyβ-C_(2)S and M_(3)-C_(3)S had activity differences.A type of O atom with special bond characteristics(no O–Si bonds)and high reactivity existed in the unit cell of M_(3)-C_(3)S.Bader charge analysis showed that the reactivity of Ca and O atoms was generally higher in M_(3)-C_(3)S than inβ-C_(2)S.Ca/O atoms had average valence electron numbers of6.437/7.550 inβ-C_(2)S and 6.481/7.537 in M_(3)-C_(3)S.Moreover,the number of electrons gained by water molecules in M_(3)-C_(3)S at the surface was higher than that inβ-C_(2)S.The average variations in the valence electrons of H_(2)O onβ-C_(2)S and M_(3)-C_(3)S were 0.041 and 0.226,respectively.This study further explains the differences in the hydration reactivity of calcium silicates and would be also useful for the design of highly reactive and environmentally friendly cements.
基金the subject of Key Science and Technology Project of Heilongjiang Transport Department(No.2017HLJ0029)the National Natural Science Foundation of China(Nos.51878003,51778513)the Major State Basic Research Development Program of China(“973”Program)(No.2015CB655101)。
文摘Structure and mechanical properties of Calcium silicate hydrate (C-S-H) at a molecular level act as "DNA" of cement-based construction materials.In order to understand loading resistance capability of C-S-H gel,research on molecular dynamics (MD) was carried out to simulate the uniaxial tension test on C-S-H model along x,y,and z directions.Due to the structure and dynamic differences of the layered structure,the C-S-H model demonstrates heterogeneous mechanical behavior.On an XY plane,the cohesive force can reach 4 GPa,which is mainly provided by the Ca-O and Si-O ionic-covalent bonds.The good plasticity of calcium silicate sheet is attributed to the silicate branch structure formation and the recovery role of interlayer calcium atoms.However,in z direction,C-S-H layers connected by the unstable H-bonds network,have the weakest tensile strength 2.2 GPa.This results in the brittle failure mode in z direction.The relatively low tensile strength and poor plasticity in z direction provides molecular insights into the tensile weakness of cement materials at macro-level.
文摘At the molar ratio of CaO to SiO2 of 1, with calcium hydroxide and sodium silicate, calcium silicate hydrate was synthesized at 50, 100, 170 ℃, respectively. The results show that temperature favors the formation of calcium silicate hydrate with perfect structure. When calcium silicate hydrate reacts with caustic solution, the decomposition rate of calcium silicate hydrate increases with the increasing caustic concentration and decreases with the raising synthesis temperature and the prolongation of reaction time. The decomposition rate is all less than 1.2% in caustic solution, and XRD pattern of the residue after reaction with caustic solution is found as the same as that of original calcium silicate hydrate, which indicates the stable existence of calcium silicate hydrate in caustic solution. When reacted with soda solution, the decomposition rate increases with the increasing soda concentration and reaction time, while decreases with the synthesis temperature. The decomposition rate is more than 2% because (CaO·SiO2·H2O(CSH(Ⅰ)),) except (Ca5(OH)2Si6O16·4H2O) and (Ca6Si6O17(OH)2,) is decomposed. So the synthesis temperature and soda concentration should be controlled in the process of transformation of sodium aluminosilicate hydrate into calcium silicate hydrate.
基金This work was supported by a Doctoral program of Zhejiang University of science and technology(F701104L08)。
文摘The problems of traditional concrete such as brittleness,poor toughness and short service life of concrete engineering under acid rain or marine environment need to be solved urgently.Hydrated calcium silicate(C-S-H)is a key component to improve the mechanical properties and durability of concrete.However,the traditional method of concrete material design based on empirical models or comparative tests has become a bottleneck restricting the sustainable development of concrete.The synthesis method,molecular structure and properties of C-S-H were systematically described in this paper;The interface structure and interaction of graphene oxide/calcium silicate hydrate(C-S-H/GO)were discussed.On this basis,the saturated and unsaturated transport characteristics of ions and water molecules in C-S-H/GO nanochannels under the environment of ocean and acid rain were introduced.The contents of this review provide the basis for improving the multi-scale transmission theory and microstructure design of concrete.It has important guiding significance for analyzing and improving the service life of concrete in complex environment.
基金This work is supported by the National Natural Science Foundation of China(Nos.51602229 and U2040222)the Opening Project of Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education(Tongji University)the Water Conservancy Science and Technology Project of Hunan Province(No.XSKJ2021000-15),China.
文摘The time-dependent viscoelastic response of cement-based materials to applied deformation is far from fully understood at the atomic level.Calcium silicate hydrate(C-S-H),the main hydration product of Portland cement,is responsible for the viscoelastic mechanism of cement-based materials.In this study,a molecular model of C-S-H was developed to explain the stress relaxation characteristics of C-S-H at different initial deformation states,Ca/Si ratios,temperatures,and water contents,which cannot be accessed experimentally.The stress relaxation of C-S-H occurs regardless of whether it is subjected to initial shear,tensile,or compressive deformation,and shows a heterogeneous characteristic.Water plays a crucial role in the stress relaxation process.A large Ca/Si ratio and high temperature reduce the cohesion between the calcium-silicate layer and the interlayer region,and the viscosity of the interlayer region,thereby accelerating the stress relaxation of C-S-H.The effect of the hydrogen bond network and the morphology of C-S-H on the evolution of the stress relaxation characteristics of C-S-H at different water contents was elucidated by nonaffine mean squared displacement.Our results shed light on the stress relaxation characteristics of C-S-H from a microscopic perspective,bridging the gap between the microscopic phenomena and the underlying atomic-level mechanisms.
基金Funded by the National Natural Science Foundation of China(Nos.51272193,51372183,51072150)Program for New Century Excellent Talents in University(No.NCET-10-0660)the National Key Research Projects(No.2016YFB0303501)
文摘Composition, morphology, and structure of hydration products in hardened pastes of three kinds of blended cement(cement-silica fume, cement-quartz powder and cement-silica fume-quartz powder) hydrated under different curing regimes(standard curing, 90 ℃ steam curing, 200 ℃ and 250 ℃ autoclave curing) were investigated by X-ray diffraction and field emission scanning electron microscope equipped with EDAX system. Results showed that the main hydration products in three kinds of hardened pastes under standard curing condition are all C-S-H gels, CH, and AFt. Under 90 ℃ steam curing condition, the main hydration products of cement-silica fume and cement-silica fume-quartz powder are C-S-H gels, whereas those of cement-quartz powder are C-S-H and CH. Under 200 or 250 ℃ autoclave curing condition, no obvious crystallized CH phase is found in hardened pastes of three kinds of blended cement, and C-S-H gels are transformed into one or more crystalline phases such as tobermorite, jennite, and xonotlite. The chemical composition and morphology of these crystalline phases depend on the composition of mixture and autoclave temperature.
文摘Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plications.The present study advocates nano-calcium carbonate(NCC)material,a relatively unexplored nanomaterial additive,for stabilization of low-plasticity fine-grained soil having moderate organic content.The plasticity index,compaction,unconfined compressive strength(UCS),compressibility and permeability characteristics of the 0.2%,0.4%,0.6%and 0.8%NCC-treated soil,and untreated soil(as control),were determined,including investigations of the effect of up to 90-d curing on the UCS and permeability properties.In terms of UCS improvement,0.4%NCC addition was identified as the optimum dosage,mobilizing a UCS at 90-d curing of almost twice that for the untreated soil.For treated soil,particle aggregation arising from NCC addition initially produced an increase in the permeability coef-ficient,but its magnitude decreased for increased curing owing to calcium silicate hydrate(CSH)gel formation,although still remaining higher compared to the untreated soil for all dosages and curing periods investigated.Compression index decreased for all NCC-treated soil investigated.SEM micro-graphs indicated the presence of gel patches along with particle aggregation.X-ray diffraction(XRD)results showed the presence of hydration products,such as CSH.Significant increases in UCS are initially attributed to void filling and then because of CSH gel formation with increased curing.