Environmental barrier coatings(EBCs)with thermomechanical robustness against calcium–magnesium–aluminum–silicate(CMAS)deposits are in high demand.The aim of this work was to clarify the influence of Sc^(3+)on the c...Environmental barrier coatings(EBCs)with thermomechanical robustness against calcium–magnesium–aluminum–silicate(CMAS)deposits are in high demand.The aim of this work was to clarify the influence of Sc^(3+)on the crystallization behavior of Yb-based coatings against CMAS deposits.The reaction products of solid solutions with compositions traversing the Sc_(2)O_(3)–Yb_(2)O_(3)system indicate that Sc^(3+)tends to form[BO_(6)]coordination polyhedra in the crystal structure to promote the formation of garnet and diopside,while Yb^(3+)occupies 7-,8-,and 9-coordinate sites to crystallize apatite and silicocarnotite.The transformation of crystalline products from apatite/silicocarnotite to garnet/diopside greatly improves the efficiency of CMAS melt consumption and facilitates the prevention of its further penetration and corrosion.Based on the commonality of cation occupancy in crystallography,an A(CaO+YbO_(1.5))–B(ScO_(1.5)+MgO+AlO_(1.5))–T(SiO_(2))pseudoternary phase diagram is established,which has great potential for describing phase equilibrium in coating-deposit systems and can provide guidance for the compositional design of corrosion-resistant coatings.展开更多
During flight,many silicates(sand,dust,debris,fly ash,etc.)are ingested by an engine.They melt at high operating temperatures on the surface of thermal barrier coatings(TBCs)to form calcium-magnesium-aluminum-silicate...During flight,many silicates(sand,dust,debris,fly ash,etc.)are ingested by an engine.They melt at high operating temperatures on the surface of thermal barrier coatings(TBCs)to form calcium-magnesium-aluminum-silicate(CMAS)amorphous settling.CMAS corrodes TBCs and causes many problems,such as composition segregation,degradation,cracking,and disbanding.As a new generation of TBC candidate materials,rare-earth zirconates(such as Sm_(2)Zr_(2)O_(7))have good CMAS resistance properties.The reaction products of Sm_(2)Zr_(2)O_(7) and CMAS and their subsequent changes were studied by the reaction of Sm_(2)Zr_(2)O_(7) and excess CMAS at 1350℃.After 1 h of reaction,Sm_(2)Zr_(2)O_(7) powders were not completely corroded.The reaction products were Sm-apatite and c-Zr0_(2) solid solution.After 4h of reaction,all Sm_(2)Zr_(2)O_(7) powders were completely corroded.After 24 h of reaction,Sm-apatite disappeared,and the c-Zr02 solid solution remained.展开更多
The effects of YO(1.5)doping in yttria-zirconia based thermal barrier coatings(TBCs)against CMAS interaction/infiltration are discussed.The TBCs with an YO(1.5)content ranging from 43–67 mol.%(balance Zr O2)were prod...The effects of YO(1.5)doping in yttria-zirconia based thermal barrier coatings(TBCs)against CMAS interaction/infiltration are discussed.The TBCs with an YO(1.5)content ranging from 43–67 mol.%(balance Zr O2)were produced by electron beam physical vapor deposition(EB-PVD)techniques.The results reveal a trend of higher apatite formation probability with the higher free YO(1.5)available in the yttriazirconia system.Additionally,the infiltration resistance and amount of consumed coating appears to be strongly dependent on the YO(1.5)content in the coating.The thinnest reaction layer and lowest infiltration was found for the highest produced 67 YO(1.5)coating.Complementary XRD experiments with volcanic ash/YO(1.5)powder mixtures with higher yttria contents than in the coatings(80 YO(1.5)and pure YO(1.5))also showed higher apatite formation with respect to increasing yttria content.The threshold composition to promote apatite-based reaction products was found to be around 50 YO(1.5)in zirconia which was proved in the coatings and XRD powder experiments.An YO(1.5)-ZrO2-Fe O-TiO2 bearing zirconolite-type phase was formed as a reaction product for all the coating compositions which implicates that TiO2 in the melt acts as a trigger for zirconolite formation.This phase could be detrimental for CMAS/volcanic ash infiltration resistance since it can be formed alongside with apatite which controls or limits the amount of Y^(3+)available for glass crystallization.The Fe rich garnet phase containing all the possible elements exhibited a slower nucleation compared to apatite and its growth was enhanced with slow cooling rates.The implications of phase stability and heat treatment effects on the reaction products are discussed for tests performed at 1250°C.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U21A2063,52372071,52002376,and 52302076)the National Key R&D Program of China(No.2021YFB3702300)+1 种基金the Liaoning Revitalization Talents Program(No.XLYC2002018)the International Partnership Program of the Chinese Academy of Sciences(No.172GJHZ2022094FN).
文摘Environmental barrier coatings(EBCs)with thermomechanical robustness against calcium–magnesium–aluminum–silicate(CMAS)deposits are in high demand.The aim of this work was to clarify the influence of Sc^(3+)on the crystallization behavior of Yb-based coatings against CMAS deposits.The reaction products of solid solutions with compositions traversing the Sc_(2)O_(3)–Yb_(2)O_(3)system indicate that Sc^(3+)tends to form[BO_(6)]coordination polyhedra in the crystal structure to promote the formation of garnet and diopside,while Yb^(3+)occupies 7-,8-,and 9-coordinate sites to crystallize apatite and silicocarnotite.The transformation of crystalline products from apatite/silicocarnotite to garnet/diopside greatly improves the efficiency of CMAS melt consumption and facilitates the prevention of its further penetration and corrosion.Based on the commonality of cation occupancy in crystallography,an A(CaO+YbO_(1.5))–B(ScO_(1.5)+MgO+AlO_(1.5))–T(SiO_(2))pseudoternary phase diagram is established,which has great potential for describing phase equilibrium in coating-deposit systems and can provide guidance for the compositional design of corrosion-resistant coatings.
基金supported by the National Natural Science Foundation of China(No.5177020526).
文摘During flight,many silicates(sand,dust,debris,fly ash,etc.)are ingested by an engine.They melt at high operating temperatures on the surface of thermal barrier coatings(TBCs)to form calcium-magnesium-aluminum-silicate(CMAS)amorphous settling.CMAS corrodes TBCs and causes many problems,such as composition segregation,degradation,cracking,and disbanding.As a new generation of TBC candidate materials,rare-earth zirconates(such as Sm_(2)Zr_(2)O_(7))have good CMAS resistance properties.The reaction products of Sm_(2)Zr_(2)O_(7) and CMAS and their subsequent changes were studied by the reaction of Sm_(2)Zr_(2)O_(7) and excess CMAS at 1350℃.After 1 h of reaction,Sm_(2)Zr_(2)O_(7) powders were not completely corroded.The reaction products were Sm-apatite and c-Zr0_(2) solid solution.After 4h of reaction,all Sm_(2)Zr_(2)O_(7) powders were completely corroded.After 24 h of reaction,Sm-apatite disappeared,and the c-Zr02 solid solution remained.
基金The Deutsche Forschungsgemeinschaft(DFG)under grant No.Schu1372/5-1,Consejo Nacional de Ciencia y Tecnologia(CONACYT)National Science Foundation(NSF)with NSF-PREM grant No.DMR-1827745。
文摘The effects of YO(1.5)doping in yttria-zirconia based thermal barrier coatings(TBCs)against CMAS interaction/infiltration are discussed.The TBCs with an YO(1.5)content ranging from 43–67 mol.%(balance Zr O2)were produced by electron beam physical vapor deposition(EB-PVD)techniques.The results reveal a trend of higher apatite formation probability with the higher free YO(1.5)available in the yttriazirconia system.Additionally,the infiltration resistance and amount of consumed coating appears to be strongly dependent on the YO(1.5)content in the coating.The thinnest reaction layer and lowest infiltration was found for the highest produced 67 YO(1.5)coating.Complementary XRD experiments with volcanic ash/YO(1.5)powder mixtures with higher yttria contents than in the coatings(80 YO(1.5)and pure YO(1.5))also showed higher apatite formation with respect to increasing yttria content.The threshold composition to promote apatite-based reaction products was found to be around 50 YO(1.5)in zirconia which was proved in the coatings and XRD powder experiments.An YO(1.5)-ZrO2-Fe O-TiO2 bearing zirconolite-type phase was formed as a reaction product for all the coating compositions which implicates that TiO2 in the melt acts as a trigger for zirconolite formation.This phase could be detrimental for CMAS/volcanic ash infiltration resistance since it can be formed alongside with apatite which controls or limits the amount of Y^(3+)available for glass crystallization.The Fe rich garnet phase containing all the possible elements exhibited a slower nucleation compared to apatite and its growth was enhanced with slow cooling rates.The implications of phase stability and heat treatment effects on the reaction products are discussed for tests performed at 1250°C.