This paper advances a new simplified formula for estimating variance components ,sums up the basic law to calculate the weights of observed values and a circulation method using the increaments of weights when estimat...This paper advances a new simplified formula for estimating variance components ,sums up the basic law to calculate the weights of observed values and a circulation method using the increaments of weights when estimating the variance components of traverse nets,advances the charicteristic roots method to estimate the variance components of traveres nets and presents a practical method to make two real and symmetric matrices two diagonal ones.展开更多
Numerical solutions of Riemann problems for 2-D scalar conservation law are given by a second order accurate MmB (locally Maximum-minimum Bounds preserving) scheme which is non-splitting. The numerical computations s...Numerical solutions of Riemann problems for 2-D scalar conservation law are given by a second order accurate MmB (locally Maximum-minimum Bounds preserving) scheme which is non-splitting. The numerical computations show that the scheme has high resolution and non-oscillatory properties. The results are completely in accordance with the theoretical solutions and all cases are distinguished efficiently展开更多
文摘This paper advances a new simplified formula for estimating variance components ,sums up the basic law to calculate the weights of observed values and a circulation method using the increaments of weights when estimating the variance components of traverse nets,advances the charicteristic roots method to estimate the variance components of traveres nets and presents a practical method to make two real and symmetric matrices two diagonal ones.
文摘Numerical solutions of Riemann problems for 2-D scalar conservation law are given by a second order accurate MmB (locally Maximum-minimum Bounds preserving) scheme which is non-splitting. The numerical computations show that the scheme has high resolution and non-oscillatory properties. The results are completely in accordance with the theoretical solutions and all cases are distinguished efficiently