A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method ha...A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method has been established in early literature. However, its practical applications and significance in advancing the analysis of AC machines need further elaboration. This paper aims to complement VAM by augmenting its theory, offering additional insights into its conclusions, as well as demonstrating its utility in assessing armature windings and its application of calculating torque for permanent magnet synchronous machines(PMSM). This work contributes to advancing the analysis of AC machines and underscores the potential for improved design and performance optimization.展开更多
For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in...For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in comparison with that of an AC power grid. The Jacobian matrix used in the power-flow calculation was deduced through methods such as Newton–Laphson iteration and Taylor series expansion. Further, the operation effect of powerflow calculation on a true bipolar VSC-HVDC power grid was analyzed briefly. The elements of the Jacobian matrix corresponding to VSC were studied under the mode of droop control and the control strategy of VSC-HVDC power grid was analyzed in detail. The power-flow calculation model for VSC-HVDC power grid of the master–slave control mode was simplified using the PQ decomposition method of the power-flow calculation of an AC power grid. Moreover, a four-terminal model of the Zhangbei VSC-HVDC demonstration project was established and tested on MATLAB. The simulation results under two kinds of operating conditions were analyzed and compared to the results of BPA; the deviation between the power-flow results was studied. The results show that the proposed calculation method can provide a feasible support for calculating the power flow in VSC-HVDC grids.展开更多
The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper,...The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better.展开更多
By means of bidirectional combined coordinate system, three kinds of calculation methods are proposed with respect to the damage-evolvlng rate and the life of elastic-plastic material, which include the single-paramet...By means of bidirectional combined coordinate system, three kinds of calculation methods are proposed with respect to the damage-evolvlng rate and the life of elastic-plastic material, which include the single-parameter method, the ratio-method and the multiplication-method. In this work a lot of new calculation equations are given; a new concept on the all-around material constant is provided, which has functional relations with each of the typical material parameters: the fatigue strength coefficient σ′f, the fatigue strength exponent b′t, the fatigue ductility coefficient ε′f, the fatigue ductility exponent c′1, the average stress, the average strain, critical loading time and so on. In addition, an example of a car part is given, and some comparisons of calculation results are made. The calculation methods will have practical significance in avoiding the unnecessary fatigue tests, saving time, manpower and capital, as well as providing the convenience for engineering applications in a certain degree.展开更多
A real free surface boundary condition,taking the viscous effects and surface tension into account,is applied to the nonlinear calculation of wave making resistance.It may provide more information about the character ...A real free surface boundary condition,taking the viscous effects and surface tension into account,is applied to the nonlinear calculation of wave making resistance.It may provide more information about the character of the nonlinear ship wave and be helpful to improving the stability,convergence and local wave profile in potential calculation of the nonlinear ship wave.The wave making calculations for Series 60 are presented.展开更多
In this paper expressions for the solution and general properties (wave energy, radiation stress, etc.) of the first-order cnoidal wave theory are given as a power series of the complementary modulus of the theta func...In this paper expressions for the solution and general properties (wave energy, radiation stress, etc.) of the first-order cnoidal wave theory are given as a power series of the complementary modulus of the theta function. These expressions are convenient for numerical calculation because they converge very rapidly over the applicable range of Ursell number (Us> 10) for the theory. As examples of practical application, the relative height of wave crest, maximum bottom velocity, radiation stress, wave set-down and set-up are calculated. Comparisons between calculated values and experimental data are made.展开更多
A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especia...A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.展开更多
The mixing calculation cannot be restrained by the quantity of return mines. In order to solve this problem, a method that the sintering mixing proportion is optimized by gray linear programming is presented based on ...The mixing calculation cannot be restrained by the quantity of return mines. In order to solve this problem, a method that the sintering mixing proportion is optimized by gray linear programming is presented based on the gray system theory and optimal theory. By using this method, the quality of sintering mines is improved and the energy consumption is reduced.展开更多
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process...Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed.展开更多
Volatile components in the extracts of basil leaves (Ocimum basilicum L.) were identified by gas chromatography/mass spectrometry (GC/MS) with electron ionization (EI) mode. The major volatile components of basil unde...Volatile components in the extracts of basil leaves (Ocimum basilicum L.) were identified by gas chromatography/mass spectrometry (GC/MS) with electron ionization (EI) mode. The major volatile components of basil under investigation are α-pinene, sabinene, β-pinene, d-limonene, eucalyptol, l-linalool and estragole. Electron ionization mass spectra of these compounds have been obtained and investigated. Furthermore, the semi-empirical MNDO [Modified Neglect of Diatomic Overlap] method was used to calculate the thermochemical data for the structural properties of these compounds.展开更多
Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic orde...Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic ordering and surface segregation effects in Pd-Rh particles with compositions 1:3, 1:1 and 3:1 containing up to 201 atoms(ca. 1.7 nm). The obtained data are used to reliably optimise energetically preferred atomic orderings in inaccessible by DFT Pd-Rh particles containing thousands of atoms and exhibiting sizes exceeding 5 nm, which are typical for catalytic metal particles. It is outlined, how segregation effects on the surface arrangement of Pd-Rh nanoalloy catalysts induced by adsorbates can be evaluated in a simple way within the present modelling setup.展开更多
We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projec...We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.展开更多
In-situ refractory metal intermetallic composites(RMICs) based either on (Nb, Si) or (Mo, Si, B) are candidate materials for ultra-high temperature applications (>1400 ℃). To provide a balance of mechanical and en...In-situ refractory metal intermetallic composites(RMICs) based either on (Nb, Si) or (Mo, Si, B) are candidate materials for ultra-high temperature applications (>1400 ℃). To provide a balance of mechanical and environmental properties, Nb-Si composites are typically alloyed with Ti and Cr, and Mo-Si-B composites are alloyed with Ti. Phase diagrams of Nb-Cr-Ti-Si and Mo-Si-B-Ti, as prerequisite knowledge for advanced materials design and processing development, are critically needed. The phase diagrams in the metal-rich regions of multicomponent Nb-Cr-Ti-Si and Mo-Si-B-Ti were rapidly established using the Calphad (Calculation of phase diagram) approach coupled with key experiments. The calculated isotherms, isopleths, and solidification paths were validated by experimental work. The important heterogeneous multiphase equilibria in both quaternary systems identified will offer engineers the opportunity to develop materials with a balance of properties for high-temperature applications.展开更多
As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this r...As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction.展开更多
The paper introduces ab inito calculations,Seim-Empirical and DFT theory and molecular method,Its steady growth,application and influence are evedently by mordern chemical attitudes and approches as well as the contin...The paper introduces ab inito calculations,Seim-Empirical and DFT theory and molecular method,Its steady growth,application and influence are evedently by mordern chemical attitudes and approches as well as the continous increase in the sophistication of computional techniques .展开更多
The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their appl...The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their applications,focused on elasticity,heat conduction,electromagnetic field analysis,and fluid dynamics.The merits of the collocation method can be attributed to the need for element mesh,simple implementation,high computational efficiency,and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method.Beginning with the fundamental principles of the collocation method,the discretization process in the continuous domain is elucidated,and how the collocation method approximation solutions for solving differential equations are explained.Delving into the historical development of the collocation methods,their earliest applications and key milestones are traced,thereby demonstrating their evolution within the realm of numerical computation.The mathematical foundations of collocation methods,encompassing the selection of interpolation functions,definition of weighting functions,and derivation of integration rules,are examined in detail,emphasizing their significance in comprehending the method’s effectiveness and stability.At last,the practical application of the collocation methods in engineering contexts is emphasized,including heat conduction simulations,electromagnetic coupled field analysis,and fluid dynamics simulations.These specific case studies can underscore collocation method’s broad applicability and effectiveness in addressing complex engineering challenges.In conclusion,this paper puts forward the future development trend of the collocation method through rigorous analysis and discussion,thereby facilitating further advancements in research and practical applications within these fields.展开更多
Compositional reservoir simulation is an important tool to model fluid flow in oil and gas reservoirs.Important investment decisions regarding oil recovery methods are based on simulation results,where hundred or even...Compositional reservoir simulation is an important tool to model fluid flow in oil and gas reservoirs.Important investment decisions regarding oil recovery methods are based on simulation results,where hundred or even thousand of different runs are performed.In this work,a new methodology using artificial intelligence to learn the thermodynamic equilibrium is proposed.This algorithm is used to replace the classical equilibrium workflow in reservoir simulation.The new method avoids the stability test for single-phase cells in most cases and provides an accurate two-phase flash initial estimate.The classical and the new workflow are compared for a gas-oil mixing case,showing a simulation time speed-up of approximately 50%.The new method can be used in compositional reservoir simulations.展开更多
For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quanti...For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.展开更多
Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheet...Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.展开更多
Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmeth...Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmethyl)butane(bib)by a hydrothermal method,respectively.X⁃ray crystallography reveals a 2D network constructed by six⁃coordinated Ni(Ⅱ)centers,bib,and Hpdc2-ligands in complex 1,while a 2D network is built by Ni(Ⅱ)and bib ligands in 2.Furthermore,the quantum⁃chemical calculations have been performed on‘molecular fragments’extracted from the crystal structure of 1 using the PBE0/LANL2DZ method in Gaussian 16 and the VASP program.CCDC:2343794,1;2343798,2.展开更多
基金supported by the Natural Science Foundation of China under Grant U22A20214 and Grant 51837010。
文摘A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method has been established in early literature. However, its practical applications and significance in advancing the analysis of AC machines need further elaboration. This paper aims to complement VAM by augmenting its theory, offering additional insights into its conclusions, as well as demonstrating its utility in assessing armature windings and its application of calculating torque for permanent magnet synchronous machines(PMSM). This work contributes to advancing the analysis of AC machines and underscores the potential for improved design and performance optimization.
基金supported by the State Grid Corporation of China Headquarter technology project (52010118000K)
文摘For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in comparison with that of an AC power grid. The Jacobian matrix used in the power-flow calculation was deduced through methods such as Newton–Laphson iteration and Taylor series expansion. Further, the operation effect of powerflow calculation on a true bipolar VSC-HVDC power grid was analyzed briefly. The elements of the Jacobian matrix corresponding to VSC were studied under the mode of droop control and the control strategy of VSC-HVDC power grid was analyzed in detail. The power-flow calculation model for VSC-HVDC power grid of the master–slave control mode was simplified using the PQ decomposition method of the power-flow calculation of an AC power grid. Moreover, a four-terminal model of the Zhangbei VSC-HVDC demonstration project was established and tested on MATLAB. The simulation results under two kinds of operating conditions were analyzed and compared to the results of BPA; the deviation between the power-flow results was studied. The results show that the proposed calculation method can provide a feasible support for calculating the power flow in VSC-HVDC grids.
基金Sponsored by the National Natural Science Foundation of China (10672080)
文摘The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better.
文摘By means of bidirectional combined coordinate system, three kinds of calculation methods are proposed with respect to the damage-evolvlng rate and the life of elastic-plastic material, which include the single-parameter method, the ratio-method and the multiplication-method. In this work a lot of new calculation equations are given; a new concept on the all-around material constant is provided, which has functional relations with each of the typical material parameters: the fatigue strength coefficient σ′f, the fatigue strength exponent b′t, the fatigue ductility coefficient ε′f, the fatigue ductility exponent c′1, the average stress, the average strain, critical loading time and so on. In addition, an example of a car part is given, and some comparisons of calculation results are made. The calculation methods will have practical significance in avoiding the unnecessary fatigue tests, saving time, manpower and capital, as well as providing the convenience for engineering applications in a certain degree.
文摘A real free surface boundary condition,taking the viscous effects and surface tension into account,is applied to the nonlinear calculation of wave making resistance.It may provide more information about the character of the nonlinear ship wave and be helpful to improving the stability,convergence and local wave profile in potential calculation of the nonlinear ship wave.The wave making calculations for Series 60 are presented.
文摘In this paper expressions for the solution and general properties (wave energy, radiation stress, etc.) of the first-order cnoidal wave theory are given as a power series of the complementary modulus of the theta function. These expressions are convenient for numerical calculation because they converge very rapidly over the applicable range of Ursell number (Us> 10) for the theory. As examples of practical application, the relative height of wave crest, maximum bottom velocity, radiation stress, wave set-down and set-up are calculated. Comparisons between calculated values and experimental data are made.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51137004,61427806 and 51577184the Equipment Development Project of Chinese Academy of Sciences under Grant No YZ201507
文摘A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.
文摘The mixing calculation cannot be restrained by the quantity of return mines. In order to solve this problem, a method that the sintering mixing proportion is optimized by gray linear programming is presented based on the gray system theory and optimal theory. By using this method, the quality of sintering mines is improved and the energy consumption is reduced.
基金supported by the National Key Research and Development Program of China[grant No.2018YFB2001800]National Natural Science Foundation of China[grant No.51871184]Dalian High-level Talents Innovation Support Program[grant No.2021RD06]。
文摘Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed.
文摘Volatile components in the extracts of basil leaves (Ocimum basilicum L.) were identified by gas chromatography/mass spectrometry (GC/MS) with electron ionization (EI) mode. The major volatile components of basil under investigation are α-pinene, sabinene, β-pinene, d-limonene, eucalyptol, l-linalool and estragole. Electron ionization mass spectra of these compounds have been obtained and investigated. Furthermore, the semi-empirical MNDO [Modified Neglect of Diatomic Overlap] method was used to calculate the thermochemical data for the structural properties of these compounds.
基金financed by the Generalitat de Catalunya via a pre-doctoral grant 2018FI-B-00384the Operational program“Science and Education for Smart Growth”,project BG05M2OP001-2.009-0028 for funding his research stay in the University of Barcelona+2 种基金financial support by the Bulgarian Ministry of Education and Science under the National Research Programme“Low-carbon Energy for the Transportsupport by the Spanish grants PGC2018-093863-B-C22,CTQ2015-64618-RMDM-2017-0767 as well as by the grant 2017SGR13 of the Generalitat de Catalunya
文摘Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic ordering and surface segregation effects in Pd-Rh particles with compositions 1:3, 1:1 and 3:1 containing up to 201 atoms(ca. 1.7 nm). The obtained data are used to reliably optimise energetically preferred atomic orderings in inaccessible by DFT Pd-Rh particles containing thousands of atoms and exhibiting sizes exceeding 5 nm, which are typical for catalytic metal particles. It is outlined, how segregation effects on the surface arrangement of Pd-Rh nanoalloy catalysts induced by adsorbates can be evaluated in a simple way within the present modelling setup.
基金financial support from the National Natural Science Foundation of China (Grant No. 12227901)the financial support from the National Natural Science Foundation of China (Grant Nos. 11974263 and 12174291)。
文摘We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.
文摘In-situ refractory metal intermetallic composites(RMICs) based either on (Nb, Si) or (Mo, Si, B) are candidate materials for ultra-high temperature applications (>1400 ℃). To provide a balance of mechanical and environmental properties, Nb-Si composites are typically alloyed with Ti and Cr, and Mo-Si-B composites are alloyed with Ti. Phase diagrams of Nb-Cr-Ti-Si and Mo-Si-B-Ti, as prerequisite knowledge for advanced materials design and processing development, are critically needed. The phase diagrams in the metal-rich regions of multicomponent Nb-Cr-Ti-Si and Mo-Si-B-Ti were rapidly established using the Calphad (Calculation of phase diagram) approach coupled with key experiments. The calculated isotherms, isopleths, and solidification paths were validated by experimental work. The important heterogeneous multiphase equilibria in both quaternary systems identified will offer engineers the opportunity to develop materials with a balance of properties for high-temperature applications.
基金financial support from the National Natural Science Foundation of China(21676036)the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing(CYS-20040)。
文摘As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction.
文摘The paper introduces ab inito calculations,Seim-Empirical and DFT theory and molecular method,Its steady growth,application and influence are evedently by mordern chemical attitudes and approches as well as the continous increase in the sophistication of computional techniques .
基金the National Natural Science Foundation of China for financial support to this work under Grant NSFC No.12072064.
文摘The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their applications,focused on elasticity,heat conduction,electromagnetic field analysis,and fluid dynamics.The merits of the collocation method can be attributed to the need for element mesh,simple implementation,high computational efficiency,and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method.Beginning with the fundamental principles of the collocation method,the discretization process in the continuous domain is elucidated,and how the collocation method approximation solutions for solving differential equations are explained.Delving into the historical development of the collocation methods,their earliest applications and key milestones are traced,thereby demonstrating their evolution within the realm of numerical computation.The mathematical foundations of collocation methods,encompassing the selection of interpolation functions,definition of weighting functions,and derivation of integration rules,are examined in detail,emphasizing their significance in comprehending the method’s effectiveness and stability.At last,the practical application of the collocation methods in engineering contexts is emphasized,including heat conduction simulations,electromagnetic coupled field analysis,and fluid dynamics simulations.These specific case studies can underscore collocation method’s broad applicability and effectiveness in addressing complex engineering challenges.In conclusion,this paper puts forward the future development trend of the collocation method through rigorous analysis and discussion,thereby facilitating further advancements in research and practical applications within these fields.
文摘Compositional reservoir simulation is an important tool to model fluid flow in oil and gas reservoirs.Important investment decisions regarding oil recovery methods are based on simulation results,where hundred or even thousand of different runs are performed.In this work,a new methodology using artificial intelligence to learn the thermodynamic equilibrium is proposed.This algorithm is used to replace the classical equilibrium workflow in reservoir simulation.The new method avoids the stability test for single-phase cells in most cases and provides an accurate two-phase flash initial estimate.The classical and the new workflow are compared for a gas-oil mixing case,showing a simulation time speed-up of approximately 50%.The new method can be used in compositional reservoir simulations.
文摘For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.
基金supported by the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2023RCZX032)the Natural Science Foundation of Guangdong Province(2022A1515010185)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-005A3)partially supported by the Special Funds for Postdoctoral Research at Tsinghua University(100415017)。
文摘Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.
文摘Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmethyl)butane(bib)by a hydrothermal method,respectively.X⁃ray crystallography reveals a 2D network constructed by six⁃coordinated Ni(Ⅱ)centers,bib,and Hpdc2-ligands in complex 1,while a 2D network is built by Ni(Ⅱ)and bib ligands in 2.Furthermore,the quantum⁃chemical calculations have been performed on‘molecular fragments’extracted from the crystal structure of 1 using the PBE0/LANL2DZ method in Gaussian 16 and the VASP program.CCDC:2343794,1;2343798,2.