This paper presents the results from laboratory experiments and theoretical analysis to investigate the development of scour around submarine pipeline under steady current conditions. Experiments show that the scour p...This paper presents the results from laboratory experiments and theoretical analysis to investigate the development of scour around submarine pipeline under steady current conditions. Experiments show that the scour process takes place in two stages: the initial rapid scour and the subsequent gradual scour development stage. An empirical formula for calculating the equilibrium scour depth(the maximum scour depth) is developed by using the regression method. This formula together with the maximum entropy theory can be applied to establish a formula to predict the scour process for given water depth, diameter of pipeline and flow velocity. Good agreement between the predicted and measured scour depth is obtained.展开更多
With the increase in the penetration rate of renewable energy, the planning and operation of power systems will face huge challenges. To ensure the sufficient utilization of renewable energy, the reasonable arrangemen...With the increase in the penetration rate of renewable energy, the planning and operation of power systems will face huge challenges. To ensure the sufficient utilization of renewable energy, the reasonable arrangement for the long-term power generation plan has become more crucial. Security-constrained unit commitment(SCUC) is a critical technical means to optimize the long-term power generation plan. However, the plentiful power sources and the complex grid structure in largescale power systems will bring great difficulties to long-term SCUC. In this paper, we propose a fast calculation method for long-term SCUC of large-scale power systems with renewable energy. First, a method for unit status reduction based on temporal decomposition is proposed, which will reduce plenty of binary variables and intertemporal constraints in SCUC. Then,an efficient redundant constraint identification(RCI) method is developed to reduce the number of network constraints. Furthermore, a joint accelerated calculation framework for status reduction and RCI is formed, which can reduce the complexity of long-term SCUC while ensuring a high-precision feasible solution. In case studies, numerical results based on two test systems ROTS2017 and NREL-118 are analyzed, which verify the effectiveness and scalability of the proposed calculation method.展开更多
基金financially supported by the National Nature Science Foundation of China (Grant No. 51279189)
文摘This paper presents the results from laboratory experiments and theoretical analysis to investigate the development of scour around submarine pipeline under steady current conditions. Experiments show that the scour process takes place in two stages: the initial rapid scour and the subsequent gradual scour development stage. An empirical formula for calculating the equilibrium scour depth(the maximum scour depth) is developed by using the regression method. This formula together with the maximum entropy theory can be applied to establish a formula to predict the scour process for given water depth, diameter of pipeline and flow velocity. Good agreement between the predicted and measured scour depth is obtained.
基金supported by the National Key R&D Program of China (No.2017YFB0902200)。
文摘With the increase in the penetration rate of renewable energy, the planning and operation of power systems will face huge challenges. To ensure the sufficient utilization of renewable energy, the reasonable arrangement for the long-term power generation plan has become more crucial. Security-constrained unit commitment(SCUC) is a critical technical means to optimize the long-term power generation plan. However, the plentiful power sources and the complex grid structure in largescale power systems will bring great difficulties to long-term SCUC. In this paper, we propose a fast calculation method for long-term SCUC of large-scale power systems with renewable energy. First, a method for unit status reduction based on temporal decomposition is proposed, which will reduce plenty of binary variables and intertemporal constraints in SCUC. Then,an efficient redundant constraint identification(RCI) method is developed to reduce the number of network constraints. Furthermore, a joint accelerated calculation framework for status reduction and RCI is formed, which can reduce the complexity of long-term SCUC while ensuring a high-precision feasible solution. In case studies, numerical results based on two test systems ROTS2017 and NREL-118 are analyzed, which verify the effectiveness and scalability of the proposed calculation method.