Ne and Mg isotope chains are investigated based on constrained calculations in the framework of a deformed relativistic mean-field (RMF) model with the NL075 parameter set. The calculated quadrupole deformation and ...Ne and Mg isotope chains are investigated based on constrained calculations in the framework of a deformed relativistic mean-field (RMF) model with the NL075 parameter set. The calculated quadrupole deformation and binding energy are compared with other theoretical results as well as the available experimental data. It shows that the calculated deformations of Ne and Mg with the NL075 are more accurate than those obtained with the NL-SH. It is predicted that ^19,29,32Ne and ^20,31Mg maybe have a triaxial deformation and ^25-28Ne and ^27-30Mg exhibit a shape coexistence probably. The closure effect of neutron number N=8 for ^20Mg is predicted to be very weak.展开更多
We investigate the properties of the Ce isotopes with neutron number N =60 - 90 and the properties of the heavy nuclei near 242Am within the framework of deformed relativistic mean-field (RMF) theory. A systematic c...We investigate the properties of the Ce isotopes with neutron number N =60 - 90 and the properties of the heavy nuclei near 242Am within the framework of deformed relativistic mean-field (RMF) theory. A systematic comparison between theoretical results and experimental data is made. The calculated binding energies, two-neutron separation energies, and two-proton separation energies are in good agreement with experimental ones. The variation trend of experimental quadrupole deformation parameters on the Ce isotopes can be approximately reproduced by the RMF model. It is found that there exists an abnormally large deformation in the ground state of proton-rich Ce isotopes. This phenomenon can be the general behavior of proton-rich nuclei on the neighboring isotopic chains such as Nd and Sin isotopes. For the heavy nuclei near ^242 Am the properties of the ground state and superdeformed isomeric state can be approximately reproduced by the RMF model. The mechanism of the appearance of anomalously large deformation or superdeformation is analyzed and its influence on nuclear properties is discussed. Parther experiments to study the anomalously large deformation in some proton-rich nuclei are suggested.展开更多
基金Project supported by the Major State Basic Research Development Program of China (Grant No G2000077404), the National Natural Science Foundation of China (Grant Nos 10125521, 10475108, 10405032 and 10328259), the Fund of the Education Ministry of China (Grant No 20010284036) and the Shanghai Phosphor Program (Grant No 03 QA 14066).
文摘Ne and Mg isotope chains are investigated based on constrained calculations in the framework of a deformed relativistic mean-field (RMF) model with the NL075 parameter set. The calculated quadrupole deformation and binding energy are compared with other theoretical results as well as the available experimental data. It shows that the calculated deformations of Ne and Mg with the NL075 are more accurate than those obtained with the NL-SH. It is predicted that ^19,29,32Ne and ^20,31Mg maybe have a triaxial deformation and ^25-28Ne and ^27-30Mg exhibit a shape coexistence probably. The closure effect of neutron number N=8 for ^20Mg is predicted to be very weak.
基金国家自然科学基金,国家重点基础研究发展计划(973计划),中国科学院知识创新工程项目,the Research Fund for the Doctoral Program of Higher Education of China
文摘We investigate the properties of the Ce isotopes with neutron number N =60 - 90 and the properties of the heavy nuclei near 242Am within the framework of deformed relativistic mean-field (RMF) theory. A systematic comparison between theoretical results and experimental data is made. The calculated binding energies, two-neutron separation energies, and two-proton separation energies are in good agreement with experimental ones. The variation trend of experimental quadrupole deformation parameters on the Ce isotopes can be approximately reproduced by the RMF model. It is found that there exists an abnormally large deformation in the ground state of proton-rich Ce isotopes. This phenomenon can be the general behavior of proton-rich nuclei on the neighboring isotopic chains such as Nd and Sin isotopes. For the heavy nuclei near ^242 Am the properties of the ground state and superdeformed isomeric state can be approximately reproduced by the RMF model. The mechanism of the appearance of anomalously large deformation or superdeformation is analyzed and its influence on nuclear properties is discussed. Parther experiments to study the anomalously large deformation in some proton-rich nuclei are suggested.