When the voltage of an analog input signal is equal to the supply voltage, it is difficult for a conventional successive approximation ADC to correctly convert the analog signal into digital signal. This paper introdu...When the voltage of an analog input signal is equal to the supply voltage, it is difficult for a conventional successive approximation ADC to correctly convert the analog signal into digital signal. This paper introduces an improved successive approximation ADC, which can convert the rail-to-rail input range and reduce sampling time through a track-and-hold circuit. Comparator offset cancellation and capacitor self-calibration techniques are used in this ADC. Measurement results show that the peak SNDR of this ADC reaches 72 dB and the signal effective bandwidth is up to 1.25 MHz. It consumes 1 mW in the test, and the figure of merit is 123 fJ/conversion-step.展开更多
This paper describes a fast digital calibration scheme for pipelined analog-to-digital converters(ADCs). The proposed method corrects the nonlinearity caused by finite opamp gain and capacitor mismatch in multiplyin...This paper describes a fast digital calibration scheme for pipelined analog-to-digital converters(ADCs). The proposed method corrects the nonlinearity caused by finite opamp gain and capacitor mismatch in multiplying digital-to-analog converters(MDACs).The considered calibration technique takes the advantages of both foreground and background calibration schemes.In this combination calibration algorithm,a novel parallel background calibration with signal-shifted correlation is proposed,and its calibration cycle is very short.The details of this technique are described in the example of a 14-bit 100 Msample/s pipelined ADC.The high convergence speed of this background calibration is achieved by three means.First,a modified 1.5-bit stage is proposed in order to allow the injection of a large pseudo-random dithering without missing code.Second,before correlating the signal,it is shifted according to the input signal so that the correlation error converges quickly.Finally,the front pipeline stages are calibrated simultaneously rather than stage by stage to reduce the calibration tracking constants.Simulation results confirm that the combination calibration has a fast startup process and a short background calibration cycle of 2×2^(21) conversions.展开更多
文摘When the voltage of an analog input signal is equal to the supply voltage, it is difficult for a conventional successive approximation ADC to correctly convert the analog signal into digital signal. This paper introduces an improved successive approximation ADC, which can convert the rail-to-rail input range and reduce sampling time through a track-and-hold circuit. Comparator offset cancellation and capacitor self-calibration techniques are used in this ADC. Measurement results show that the peak SNDR of this ADC reaches 72 dB and the signal effective bandwidth is up to 1.25 MHz. It consumes 1 mW in the test, and the figure of merit is 123 fJ/conversion-step.
基金supported by the National Key Project,China(No.2008zx010200001)
文摘This paper describes a fast digital calibration scheme for pipelined analog-to-digital converters(ADCs). The proposed method corrects the nonlinearity caused by finite opamp gain and capacitor mismatch in multiplying digital-to-analog converters(MDACs).The considered calibration technique takes the advantages of both foreground and background calibration schemes.In this combination calibration algorithm,a novel parallel background calibration with signal-shifted correlation is proposed,and its calibration cycle is very short.The details of this technique are described in the example of a 14-bit 100 Msample/s pipelined ADC.The high convergence speed of this background calibration is achieved by three means.First,a modified 1.5-bit stage is proposed in order to allow the injection of a large pseudo-random dithering without missing code.Second,before correlating the signal,it is shifted according to the input signal so that the correlation error converges quickly.Finally,the front pipeline stages are calibrated simultaneously rather than stage by stage to reduce the calibration tracking constants.Simulation results confirm that the combination calibration has a fast startup process and a short background calibration cycle of 2×2^(21) conversions.