期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
In-Orbit Calibration Uncertainty of the Microwave Radiation Imager on board Fengyun-3C
1
作者 Xinxin XIE Wanting MENG +2 位作者 Jiakai HE Weimin YU Xue LI 《Journal of Meteorological Research》 SCIE CSCD 2021年第6期943-951,共9页
This study evaluates the in-orbit calibration uncertainty(CU)for the microwave radiation imager(MWRI)on board the Chinese polar-orbiting meteorological satellite Fengyun-3 C(FY-3 C).Uncertainty analysis of the MWRI pr... This study evaluates the in-orbit calibration uncertainty(CU)for the microwave radiation imager(MWRI)on board the Chinese polar-orbiting meteorological satellite Fengyun-3 C(FY-3 C).Uncertainty analysis of the MWRI provides a direct link to the calibration system of the sensor and quantifies the calibration confidence based on the prelaunch and postlaunch measurements.The unique design of the sensor makes the uncertainty in the calibration of the sensor highly correlate to the uncertainty in the brightness temperature(TB)measured at the hot view,while the cold view has negligible impacts on the calibration confidence.Lack of knowledge on the emission of the hot-load reflector hampers the MWRI calibration accuracy significantly in the descending passes of the orbits when the hotload reflector is heated nonuniformly by the solar illumination.Radiance contamination originating from the satellite and in-orbit environments could enter the primary reflector via the hot view and further impinge on the CU,especially at the 10.65-GHz channels where the main-beam width is much broader than that of higher-frequency channels.The monthly-mean CU is lower than 2 K at all channels,depending on the observed earth scenes and in-orbit environments,and the month-to-month variation of CU is also noticed for all channels.Due to the uncertainty in the emissive hot-load reflector,CU in the descending passes is generally larger than that in the ascending orbits.Moreover,up to 1-K CU difference between the ocean and land scenes is found for the 10.65-GHz channels,while this difference is less than 0.1 K at the 89-GHz channels. 展开更多
关键词 calibration uncertainty(CU) microwave radiation imager(MWRI) Fengyun-3(FY-3)
原文传递
Calibration chain design based on integrating sphere transfer radiometer for SI-traceable on-orbit spectral radiometric calibration and its uncertainty analysis 被引量:1
2
作者 赵维宁 方伟 +2 位作者 孙立微 崔立红 王玉鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期276-283,共8页
In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM)... In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality. 展开更多
关键词 SI-traceable calibration on-orbit high-accuracy transfer chain integrating sphere transfer radiometer uncertainty analysis
下载PDF
Method study and uncertainty analysis of calibration coefficients validation based on the Inner Mongolia test site 被引量:1
3
作者 GAO HaiLiang GU XingFa +3 位作者 YU Tao GONG Hui LI JiaGuo LI XiaoYing 《Science China Earth Sciences》 SCIE EI CAS 2013年第9期1540-1547,共8页
Calibration coefficients validation is the foundation for ascertaining the sensor performance and carrying out the quantitative application.Based on the analysis of the differences between the calibration and validati... Calibration coefficients validation is the foundation for ascertaining the sensor performance and carrying out the quantitative application.Based on the analysis of the differences between the calibration and validation,two calibration coefficients validation methods were introduced in this paper.Taking the HJ-1A satellite CCD1 camera as an example,the uncertainties of calibration coefficients validation were analyzed.The calibration coefficients validation errors were simulated based on the measured data at an Inner Mongolia test site.The result showed that in the large view angle,the ground directional reflectance variation and the atmospheric path variation were the main error sources in calibration coefficients validation.The ground directional reflectance correction and atmospheric observation angle normalization should be carried out to improve the validation accuracy of calibration coefficients. 展开更多
关键词 Method study and uncertainty analysis of calibration coefficients validation based on the Inner Mongolia test site
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部