For calibrating the laser plane to implement 3D shape measurement, an algorithm for extracting the laser stripe with sub-pixel accuracy is proposed. The proposed algorithm mainly consists of two stages: two-side edge...For calibrating the laser plane to implement 3D shape measurement, an algorithm for extracting the laser stripe with sub-pixel accuracy is proposed. The proposed algorithm mainly consists of two stages: two-side edge detection and center line extraction. First, the two-side edge of laser stripe is detected using the principal component angle-based progressive probabilistic Hough transform and its width is calculated through the distance between these two edges. Secondly, the center line of laser strip is extracted with 2D Taylor expansion at a sub-pixel level and the laser plane is calibrated with the 3D reconstructed coordinates from the extracted 2D sub-pixel ones. Experimental results demonstrate that the proposed method can not only extract the laser stripe at a high speed, nearly average 78 ms/frame, but also calibrate the coplanar laser stripes at a low error, limited to 0.3 mm. The proposed algorithm can satisfy the system requirement of two-side edge detection and center line extraction, and rapid speed, high precision, as well as strong anti-jamming.展开更多
This article studies distributed pose(orientation and position)estimation of leader–follower multi-agent systems over𝜅-layer graphs in 2-D plane.Only the leaders have access to their orientations and position...This article studies distributed pose(orientation and position)estimation of leader–follower multi-agent systems over𝜅-layer graphs in 2-D plane.Only the leaders have access to their orientations and positions,while the followers can measure the relative bearings or(angular and linear)velocities in their unknown local coordinate frames.For the orientation estimation,the local relative bearings are used to obtain the relative orientations among the agents,based on which a distributed orientation estimation algorithm is proposed for each follower to estimate its orientation.For the position estimation,the local relative bearings are used to obtain the position constraints among the agents,and a distributed position estimation algorithm is proposed for each follower to estimate its position by solving its position constraints.Both the orientation and position estimation errors converge to zero asymptotically.A simulation example is given to verify the theoretical results.展开更多
In this paper,we propose a new algorithm to establish the data association between a camera and a 2-D Light Detection And Ranging sensor (LIDAR).In contrast to the previous works,where data association is establishe...In this paper,we propose a new algorithm to establish the data association between a camera and a 2-D Light Detection And Ranging sensor (LIDAR).In contrast to the previous works,where data association is established by calibrating the intrinsic parameters of the camera and the extrinsic parameters of the camera and the LIDAR,we formulate the map between laser points and pixels as a 2-D homography.The line-point correspondence is employed to construct geometric constraint on the homography matrix.This enables checkerboard to be not essential and any object with straight boundary can be an effective target.The calculation of the 2-D homography matrix consists of a linear least-squares solution of a homogeneous system followed by a nonlinear minimization of the geometric error in the image plane.Since the measurement quality impacts on the accuracy of the result,we investigate the equivalent constraint and show that placing the calibration target nearby the 2-D LIDAR will provide sufficient constraints to calculate the 2-D homography matrix.Simulation and experimental results validate that the proposed algorithm is robust and accurate.Compared with the previous works,which require two calibration processes and special calibration targets such as checkerboard,our method is more flexible and easier to perform.展开更多
基金The National Natural Science Foundation of China(No.50805023)the Science and Technology Support Program of Jiangsu Province(No.BE2008081)+1 种基金the Research and Innovation Project for College Graduates of Jiangsu Province(No.CXZZ13_0086)Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1401)
文摘For calibrating the laser plane to implement 3D shape measurement, an algorithm for extracting the laser stripe with sub-pixel accuracy is proposed. The proposed algorithm mainly consists of two stages: two-side edge detection and center line extraction. First, the two-side edge of laser stripe is detected using the principal component angle-based progressive probabilistic Hough transform and its width is calculated through the distance between these two edges. Secondly, the center line of laser strip is extracted with 2D Taylor expansion at a sub-pixel level and the laser plane is calibrated with the 3D reconstructed coordinates from the extracted 2D sub-pixel ones. Experimental results demonstrate that the proposed method can not only extract the laser stripe at a high speed, nearly average 78 ms/frame, but also calibrate the coplanar laser stripes at a low error, limited to 0.3 mm. The proposed algorithm can satisfy the system requirement of two-side edge detection and center line extraction, and rapid speed, high precision, as well as strong anti-jamming.
基金supported by Nanyang Technological University,Singapore under the Wallenberg-NTU Presidential Postdoctoral Fellowship and the Natural Science Foundation in Heilongjiang Province,China(YQ2022F003).
文摘This article studies distributed pose(orientation and position)estimation of leader–follower multi-agent systems over𝜅-layer graphs in 2-D plane.Only the leaders have access to their orientations and positions,while the followers can measure the relative bearings or(angular and linear)velocities in their unknown local coordinate frames.For the orientation estimation,the local relative bearings are used to obtain the relative orientations among the agents,based on which a distributed orientation estimation algorithm is proposed for each follower to estimate its orientation.For the position estimation,the local relative bearings are used to obtain the position constraints among the agents,and a distributed position estimation algorithm is proposed for each follower to estimate its position by solving its position constraints.Both the orientation and position estimation errors converge to zero asymptotically.A simulation example is given to verify the theoretical results.
基金supported in part by the National Natural Science Foundation of China (Nos. 90820305 and 60775040)the National High-Tech Research and Development (863) Program of China (No. 2012AA041402)
文摘In this paper,we propose a new algorithm to establish the data association between a camera and a 2-D Light Detection And Ranging sensor (LIDAR).In contrast to the previous works,where data association is established by calibrating the intrinsic parameters of the camera and the extrinsic parameters of the camera and the LIDAR,we formulate the map between laser points and pixels as a 2-D homography.The line-point correspondence is employed to construct geometric constraint on the homography matrix.This enables checkerboard to be not essential and any object with straight boundary can be an effective target.The calculation of the 2-D homography matrix consists of a linear least-squares solution of a homogeneous system followed by a nonlinear minimization of the geometric error in the image plane.Since the measurement quality impacts on the accuracy of the result,we investigate the equivalent constraint and show that placing the calibration target nearby the 2-D LIDAR will provide sufficient constraints to calculate the 2-D homography matrix.Simulation and experimental results validate that the proposed algorithm is robust and accurate.Compared with the previous works,which require two calibration processes and special calibration targets such as checkerboard,our method is more flexible and easier to perform.