The chemical composition of alloys directly determines their mechanical behaviors and application fields.Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality co...The chemical composition of alloys directly determines their mechanical behaviors and application fields.Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes.A quantitative calibration-free laser-induced breakdown spectroscopy(CF-LIBS)analysis method,which carries out combined correction of plasma temperature and spectral intensity by using a secondorder iterative algorithm and two boundary standard samples,is proposed to realize accurate composition measurements.Experimental results show that,compared to conventional CF-LIBS analysis,the relative errors for major elements Cu and Zn and minor element Pb in the copperlead alloys has been reduced from 12%,26%and 32%to 1.8%,2.7%and 13.4%,respectively.The measurement accuracy for all elements has been improved substantially.展开更多
Calibration-free(CF)laser-induced breakdown spectroscopy(LIBS)is normally only applicable for gated detectors due to its dependence on the assumption of a steady-state plasma.However,most currently available LIBS syst...Calibration-free(CF)laser-induced breakdown spectroscopy(LIBS)is normally only applicable for gated detectors due to its dependence on the assumption of a steady-state plasma.However,most currently available LIBS systems are equipped with non-gated detectors such as chargecoupled device(CCD),which degrades the accuracy of CF method.In this paper,the reason for the less satisfactory quantification performance of CF for LIBS with non-gated detectors was clarified and a time-integration calibration-free(TICF)model was proposed for applications with non-gated detectors.It was based on an assumed temporal profile of plasma properties,including temperature and electron density,obtained from another pre-experiment.The line intensity at different time during the signal collection time window was estimated with self-absorption correction according to the temporal profile of the plasma properties.The proposed model was validated on titanium alloys and compared with traditional CF.The accuracy of elemental concentration measurement was improved significantly:the average relative error of aluminum and vanadium decreased from 6.07%and 22.34%to 2.01%and 1.92%,respectively.The quantification results showed that TICF method was able to extend the applicability of CF to LIBS with non-gated detectors.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2017YFA0304203)the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT13076)+3 种基金National Natural Science Foundation of China(Nos.61475093,61378047,61775125)the Shanxi‘1331 Project’Key Subjects Constructionthe Major Special Science and Technology Projects in Shanxi Province(No.MD2016-01)the State Key Lab of Power Systems for technical contribution and financial support
文摘The chemical composition of alloys directly determines their mechanical behaviors and application fields.Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes.A quantitative calibration-free laser-induced breakdown spectroscopy(CF-LIBS)analysis method,which carries out combined correction of plasma temperature and spectral intensity by using a secondorder iterative algorithm and two boundary standard samples,is proposed to realize accurate composition measurements.Experimental results show that,compared to conventional CF-LIBS analysis,the relative errors for major elements Cu and Zn and minor element Pb in the copperlead alloys has been reduced from 12%,26%and 32%to 1.8%,2.7%and 13.4%,respectively.The measurement accuracy for all elements has been improved substantially.
基金supports from National Natural Science Foundation of China(No.51906124)Shanxi Province Science and Technology Department(No.20201101013)+1 种基金Guoneng Bengbu Power Generation Co.,Ltd.(20212000001)Scientific Research Program for Young Talents of China National Nuclear Corporation(2020).
文摘Calibration-free(CF)laser-induced breakdown spectroscopy(LIBS)is normally only applicable for gated detectors due to its dependence on the assumption of a steady-state plasma.However,most currently available LIBS systems are equipped with non-gated detectors such as chargecoupled device(CCD),which degrades the accuracy of CF method.In this paper,the reason for the less satisfactory quantification performance of CF for LIBS with non-gated detectors was clarified and a time-integration calibration-free(TICF)model was proposed for applications with non-gated detectors.It was based on an assumed temporal profile of plasma properties,including temperature and electron density,obtained from another pre-experiment.The line intensity at different time during the signal collection time window was estimated with self-absorption correction according to the temporal profile of the plasma properties.The proposed model was validated on titanium alloys and compared with traditional CF.The accuracy of elemental concentration measurement was improved significantly:the average relative error of aluminum and vanadium decreased from 6.07%and 22.34%to 2.01%and 1.92%,respectively.The quantification results showed that TICF method was able to extend the applicability of CF to LIBS with non-gated detectors.