The research of high-performance polarization controllers is of great significance for expanding the application field of polarization optics. Here, a polarization switch is demonstrated by using a dual-core photonic ...The research of high-performance polarization controllers is of great significance for expanding the application field of polarization optics. Here, a polarization switch is demonstrated by using a dual-core photonic crystal fiber(DCPCF)with four symmetrical air holes, placed above and below each core, filled with magnetic fluid(MF). The switch, which utilizes a magnetic field to change the coupling length ratio of the x and y polarization modes, enables dynamic tuning of the polarization state and extinction ratio. Numerical results show that when the working length is 36.638 mm, the magneto–optical polarization switch can operate in four communication bands, i.e., 1509 nm to 1520 nm, 1544 nm to1556 nm, 1578 nm to 1591 nm, and 1611 nm to 1624 nm. Moreover, the extinction ratio(ER) is greater than 20 d B in the fiber length range of 38.5 mm to 38.7 mm, indicating that the device has a good fault tolerance for the interception of the fiber length.展开更多
A silicon-based photonic switch is proposed and simulated based on the multimode interference (MMI) principle and the free-carrier plasma dispersion effect in silicon-germanium. The proposed switch, designed for 1.5...A silicon-based photonic switch is proposed and simulated based on the multimode interference (MMI) principle and the free-carrier plasma dispersion effect in silicon-germanium. The proposed switch, designed for 1.55μm window operation,is useful for DWDM optical networks. The switch consists of two input single-mode ridge waveguide ports,a MMI section, and three output single-mode ridge waveguide ports. In the MMI section, two index-modulation regions are placed to divert input optical signals from the two input ports to each of the three output ports. Switching characteristics are demonstrated theoretically by a beam propagation method for 1.55μm operation. The simulated results show that the insertion loss of the switch is less than 1.43dB, and the crosstalk is between - 18 and - 32.8dB.展开更多
Application of the pressure controlled isothermal heating vertical deposition method to the fabrication of colloidal photonic crystals is systematically investigated in this paper. The fabricated samples are character...Application of the pressure controlled isothermal heating vertical deposition method to the fabrication of colloidal photonic crystals is systematically investigated in this paper. The fabricated samples are characterized by scanning electron microscope and transmission spectrum. High-quality samples with large transmissions in the pass bands and the sharp band edges are obtained and the optimum growth condition is determined. For the best sample, the transmission in the pass bands approaches 0.9 while that in the band gap reaches 0.1. More importantly, the maximum differential transmission as high as 0.1/nm is achieved. In addition, it is found that the number of stacking layers does not increase linearly with concentration of PS spheres in a solution, and a gradual saturation occurs when the concentration of PS spheres exceeds 1.5 wt.%. The uniformity of the fabricated samples is examined by transmission measurements on areas with different sizes. Finally, the tolerance of the fabricated samples to baking was studied.展开更多
A new structure of optical buffer for resolving ATM cell contention is presented in this paper. It is composed of fiber delay lines, optical waveguide switching array and nonlinear semiconductor optical amplifier. Als...A new structure of optical buffer for resolving ATM cell contention is presented in this paper. It is composed of fiber delay lines, optical waveguide switching array and nonlinear semiconductor optical amplifier. Also, an experimental system for switching ATM cells formed by data at different transmission rates (up to 622MB/s) from different users is reported. The throughput of this system is 1.2Gb/s.展开更多
The emerging new concepts and technologies based on microwave photonics have led to an ever-increasing interest in developing innovative radar systems with a net gain in functionality,bandwidth /resolution,size,mass,c...The emerging new concepts and technologies based on microwave photonics have led to an ever-increasing interest in developing innovative radar systems with a net gain in functionality,bandwidth /resolution,size,mass,complexity and cost when compared with the traditional implementations. This paper describes the techniques developed in the last few years in microwave photonics that might revolutionize the way to design multifunction radar systems,with an emphasis on the recent advances in optoelectronic oscillators( OEOs),arbitrary waveform generation,photonic mixing,phase coding,filtering,beamforming,analog-to-digital conversion,and stable radio-frequency signal transfer. Challenges in implementation of these components and subsystems for meeting the technique requirements of the multifunction radar applications are discussed.展开更多
The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The...The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The overall size of the circuit is large,usually reaches hundreds of microns.Besides,it is difficult to balance the ultrafast response and ultra-low energy consumption problem,and the crosstalk between two traditional devices is difficult to overcome.Here,we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density,ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate.The feature size of the whole circuit is only 2.5μm×7μm,and that of a single device is 2μm×2μm.The distance between two adjacent devices is as small as 1.5μm,within wavelength magnitude scale.Theoretical response time of the circuit is 150 fs,and the threshold energy is within 10 fJ/bit.We have also considered the crosstalk problem.The circuit also realizes a function of identifying two-digit logic signal results.Our work provides a new idea for the design of ultrafast,ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits.展开更多
In recent decades,silicon photonics has attracted much attention in telecom and data-com areas.Constituted of high refractive-index contrast waveguides on silicon-on-insulator(SOI),a variety of integrated photonic pas...In recent decades,silicon photonics has attracted much attention in telecom and data-com areas.Constituted of high refractive-index contrast waveguides on silicon-on-insulator(SOI),a variety of integrated photonic passive and active devices have been implemented supported by excellent optical properties of silicon in the mid-infrared spectrum.The main advantage of the silicon photonics is the ability to use complementary metal oxide semiconductor(CMOS)process-compatible fabrication technologies,resulting in high-volume production at low cost.On the other hand,explosively growing traffic in the telecom,data center and high-performance computer demands the data flow to have high speed,wide bandwidth,low cost,and high energy-efficiency,as well as the photonics and electronics to be integrated for ultra-fast data transfer in networks.In practical applications,silicon photonics started with optical interconnect transceivers in the data-com first,and has been now extended to innovative applications such as multi-port optical switches in the telecom network node and integrated optical phased arrays(OPAs)in light detection and ranging(LiDAR).This paper overviews the progresses of silicon photonics from four points reflecting the recent advances mentioned above.CMOS-based silicon photonic platform technologies,applications to optical transceiver in the data-com network,applications to multi-port optical switches in the telecom network and applications to OPA in LiDAR system.展开更多
Optical diode behavior of asymmetric one-dimensional photonic crystal with Kerr defect is numerically investigated using nonlinear transfer matrix method. In the linear case, the intensity and the phase of transmitted...Optical diode behavior of asymmetric one-dimensional photonic crystal with Kerr defect is numerically investigated using nonlinear transfer matrix method. In the linear case, the intensity and the phase of transmitted field are the same for the forward and backward operations. In the nonlinear case, however, the transmitted intensities are much different for the two operations, which display diode characteristic. Physical origin of the anisotropic transmission lies in the different localizations in the defect layer of the two operations.展开更多
We report a strict non-blocking four-port optical router that is used for a mesh photonic network-on-chip on a silicon-on-insulator platform.The router consists of eight silicon microring switches that are tuned by th...We report a strict non-blocking four-port optical router that is used for a mesh photonic network-on-chip on a silicon-on-insulator platform.The router consists of eight silicon microring switches that are tuned by the thermo-optic effect.For each tested rousting state,the signal-to-noise ratio of the optical router is larger than 13.8 dB at the working wavelength.The routing functionality of the device is verified.We perform 40 Gbps nonreturn to zero code data transmission on its 12 optical links.Meanwhile,data transmission using wavelength division multiplexing on eight channels in the C band(from 1525 to 1565 nm)has been adopted to increase the communication capacity.The optical router’s average energy efficiency is 25.52 fJ/bit.The rising times(10%to 90%)of the eight optical switch elements are less than 10μs and the falling times(90%-10%)are less than 20μs.展开更多
This paper describes the interaction between two spatial modes of the optical fields with a single atom trapped inner coupled double-cavity. Theoretical derivation and numerical simulation with the experimental availa...This paper describes the interaction between two spatial modes of the optical fields with a single atom trapped inner coupled double-cavity. Theoretical derivation and numerical simulation with the experimental available parameters show that photon-photon switching and π phase shift of single photons may be achieved with current experimental technology. As the probe and control fields are in different spatial modes, the system is superior for implementing cavity QED-based photonic quantum networks.展开更多
We propose and experimentally demonstrate a 2×2 thermo-optic(TO) crossbar switch implemented by dual photonic crystal nanobeam(PCN)cavities within a silicon-on-insulator(SOI)platform.By thermally tuning the refra...We propose and experimentally demonstrate a 2×2 thermo-optic(TO) crossbar switch implemented by dual photonic crystal nanobeam(PCN)cavities within a silicon-on-insulator(SOI)platform.By thermally tuning the refractive index of silicon,the resonance wavelength of the PCN cavities can be red-shifted.With the help of the ultrasmall mode volumes of the PCN cavities,only~0.16 mW power is needed to change the switching state.With a spectral passband of 0.09 nm at the 1583.75 nm operation wavelength,the insertion loss(IL)and crosstalk(CT)performances were measured as IL(bar)=-0.2 dB,CT(bar)=-15 dB,IL(cross)=-1.5 dB,and CT(cross)=-15 dB.Furthermore,the thermal tuning efficiency of the fabricated device is as high as1.23 nm/mW.展开更多
Integrated photonics offers the possibility of compact,low energy,bandwidth-dense interconnects for large port count spatial optical switches,facilitating flexible and energy efficient data movement in future data com...Integrated photonics offers the possibility of compact,low energy,bandwidth-dense interconnects for large port count spatial optical switches,facilitating flexible and energy efficient data movement in future data communications systems.To achieve widespread adoption,intimate integration with electronics has to be possible,requiring switch design using standard microelectronic foundry processes and available devices.We report on the feasibility of a switch fabric comprised of ubiquitous silicon photonic building blocks,opening the possibility to combine technologies,and materials towards a new path for switch fabric design.Rather than focus on integrating all devices on a single silicon chip die to achieve large port count optical switching,this work shifts the focus towards innovative packaging and integration schemes.In this work,we demonstrate 1×8 and 8×1 microring-based silicon photonic switch building blocks with software control,providing the feasibility of a full 8×8 architecture composed of silicon photonic building blocks.The proposed switch is fully non-blocking,has path-independent insertion loss,low crosstalk,and is straightforward to control.We further analyze this architecture and compare it with other common switching architectures for varying underlying technologies and radices,showing that the proposed architecture favorably scales to very large port counts when considering both crosstalk and architectural footprint.Separating a switch fabric into functional building blocks via multiple photonic integrated circuits offers the advantage of piece-wise manufacturing,packaging,and assembly,potentially reducing the number of optical I/O and electrical contacts on a single die.展开更多
Mode-and polarization-division multiplexing offer new dimensions to increase the transmission capacity of optical communications. Selective switches are key components in reconfigurable optical network nodes. An on-ch...Mode-and polarization-division multiplexing offer new dimensions to increase the transmission capacity of optical communications. Selective switches are key components in reconfigurable optical network nodes. An on-chip silicon 2 × 2 mode-and polarization-selective switch that can route four data channels on two modes and two polarizations simultaneously is proposed and experimentally demonstrated for the first time, to the best of our knowledge. The overall insertion losses are lower than 8.6 d B. To reduce the inter-modal crosstalk, polarization beam splitters are added to filter the undesired polarizations or modes. The measured inter-modal andintra-modal crosstalk values are below-23.2 and-22.8 d B for all the channels, respectively.展开更多
Strong nonlinearity of plasmonic metamaterials can be designed near their effective plasma frequency in the epsilon-near-zero(ENZ) regime. We explore the realization of an all-optical modulator based on the Au nonline...Strong nonlinearity of plasmonic metamaterials can be designed near their effective plasma frequency in the epsilon-near-zero(ENZ) regime. We explore the realization of an all-optical modulator based on the Au nonlinearity using an ENZ cavity formed by a few Au nanorods inside a Si photonic waveguide. The resulting modulator has robust performance with a modulation depth of about 30 dB/μm and loss less than 0.8 dB for switching energies below 600 fJ. The modulator provides a double advantage of high mode transmission and strong nonlinearity enhancement in the few-nanorod-based design.展开更多
This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A fig...This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A figure of merit(FoM) is introduced to evaluate the switching response of the PADC when a dual-output Mach–Zehnder modulator(MZM) serves as the photonic switch to parallelize the sampled pulse train into two channels. After the optimization of the FoM and utilization of the channel-mismatch compensation algorithm,the system bandwidth of PADC is expanded and the signal-to-distortion ratio is enhanced.展开更多
基金supported by the National Key Research and Development Program of China “National Quality Infrastructure” (Grant No. 2021YFF0600902)。
文摘The research of high-performance polarization controllers is of great significance for expanding the application field of polarization optics. Here, a polarization switch is demonstrated by using a dual-core photonic crystal fiber(DCPCF)with four symmetrical air holes, placed above and below each core, filled with magnetic fluid(MF). The switch, which utilizes a magnetic field to change the coupling length ratio of the x and y polarization modes, enables dynamic tuning of the polarization state and extinction ratio. Numerical results show that when the working length is 36.638 mm, the magneto–optical polarization switch can operate in four communication bands, i.e., 1509 nm to 1520 nm, 1544 nm to1556 nm, 1578 nm to 1591 nm, and 1611 nm to 1624 nm. Moreover, the extinction ratio(ER) is greater than 20 d B in the fiber length range of 38.5 mm to 38.7 mm, indicating that the device has a good fault tolerance for the interception of the fiber length.
文摘A silicon-based photonic switch is proposed and simulated based on the multimode interference (MMI) principle and the free-carrier plasma dispersion effect in silicon-germanium. The proposed switch, designed for 1.55μm window operation,is useful for DWDM optical networks. The switch consists of two input single-mode ridge waveguide ports,a MMI section, and three output single-mode ridge waveguide ports. In the MMI section, two index-modulation regions are placed to divert input optical signals from the two input ports to each of the three output ports. Switching characteristics are demonstrated theoretically by a beam propagation method for 1.55μm operation. The simulated results show that the insertion loss of the switch is less than 1.43dB, and the crosstalk is between - 18 and - 32.8dB.
基金Project supported by the National Natural Science Foundation of China (Grant No 10674051)the Natural Science Foundation of Guangdong province, China (Grant No 06025082)+1 种基金the Program for Innovative Research Team of the Higher Education in Guangdong (Grant No 06CXTD005)the Program for New Century Excellent Talents (NCET) in University of China (Grant No ncet-04-0829)
文摘Application of the pressure controlled isothermal heating vertical deposition method to the fabrication of colloidal photonic crystals is systematically investigated in this paper. The fabricated samples are characterized by scanning electron microscope and transmission spectrum. High-quality samples with large transmissions in the pass bands and the sharp band edges are obtained and the optimum growth condition is determined. For the best sample, the transmission in the pass bands approaches 0.9 while that in the band gap reaches 0.1. More importantly, the maximum differential transmission as high as 0.1/nm is achieved. In addition, it is found that the number of stacking layers does not increase linearly with concentration of PS spheres in a solution, and a gradual saturation occurs when the concentration of PS spheres exceeds 1.5 wt.%. The uniformity of the fabricated samples is examined by transmission measurements on areas with different sizes. Finally, the tolerance of the fabricated samples to baking was studied.
基金the High Technology Research and Development Programme of China
文摘A new structure of optical buffer for resolving ATM cell contention is presented in this paper. It is composed of fiber delay lines, optical waveguide switching array and nonlinear semiconductor optical amplifier. Also, an experimental system for switching ATM cells formed by data at different transmission rates (up to 622MB/s) from different users is reported. The throughput of this system is 1.2Gb/s.
基金Supported in part by the National Basic Research Program of China(2012CB315705)the Natural Science Foundation of Jiangsu Province(BK2012031,BK2012381)+1 种基金the National Natural Science Foundation of China(61201048,61107063)the Fundamental Research Funds for the Central Universities
文摘The emerging new concepts and technologies based on microwave photonics have led to an ever-increasing interest in developing innovative radar systems with a net gain in functionality,bandwidth /resolution,size,mass,complexity and cost when compared with the traditional implementations. This paper describes the techniques developed in the last few years in microwave photonics that might revolutionize the way to design multifunction radar systems,with an emphasis on the recent advances in optoelectronic oscillators( OEOs),arbitrary waveform generation,photonic mixing,phase coding,filtering,beamforming,analog-to-digital conversion,and stable radio-frequency signal transfer. Challenges in implementation of these components and subsystems for meeting the technique requirements of the multifunction radar applications are discussed.
基金the National Key Research and Development Program of China under Grant No.2018YFB2200403the National Natural Science Foundation of China under Grant Nos.11734001,91950204,92150302.
文摘The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The overall size of the circuit is large,usually reaches hundreds of microns.Besides,it is difficult to balance the ultrafast response and ultra-low energy consumption problem,and the crosstalk between two traditional devices is difficult to overcome.Here,we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density,ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate.The feature size of the whole circuit is only 2.5μm×7μm,and that of a single device is 2μm×2μm.The distance between two adjacent devices is as small as 1.5μm,within wavelength magnitude scale.Theoretical response time of the circuit is 150 fs,and the threshold energy is within 10 fJ/bit.We have also considered the crosstalk problem.The circuit also realizes a function of identifying two-digit logic signal results.Our work provides a new idea for the design of ultrafast,ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits.
文摘In recent decades,silicon photonics has attracted much attention in telecom and data-com areas.Constituted of high refractive-index contrast waveguides on silicon-on-insulator(SOI),a variety of integrated photonic passive and active devices have been implemented supported by excellent optical properties of silicon in the mid-infrared spectrum.The main advantage of the silicon photonics is the ability to use complementary metal oxide semiconductor(CMOS)process-compatible fabrication technologies,resulting in high-volume production at low cost.On the other hand,explosively growing traffic in the telecom,data center and high-performance computer demands the data flow to have high speed,wide bandwidth,low cost,and high energy-efficiency,as well as the photonics and electronics to be integrated for ultra-fast data transfer in networks.In practical applications,silicon photonics started with optical interconnect transceivers in the data-com first,and has been now extended to innovative applications such as multi-port optical switches in the telecom network node and integrated optical phased arrays(OPAs)in light detection and ranging(LiDAR).This paper overviews the progresses of silicon photonics from four points reflecting the recent advances mentioned above.CMOS-based silicon photonic platform technologies,applications to optical transceiver in the data-com network,applications to multi-port optical switches in the telecom network and applications to OPA in LiDAR system.
文摘Optical diode behavior of asymmetric one-dimensional photonic crystal with Kerr defect is numerically investigated using nonlinear transfer matrix method. In the linear case, the intensity and the phase of transmitted field are the same for the forward and backward operations. In the nonlinear case, however, the transmitted intensities are much different for the two operations, which display diode characteristic. Physical origin of the anisotropic transmission lies in the different localizations in the defect layer of the two operations.
基金National Key Research and Development Program of China(2019YFB2203602)National Science Fund for Distinguished Young Scholars(61825504).
文摘We report a strict non-blocking four-port optical router that is used for a mesh photonic network-on-chip on a silicon-on-insulator platform.The router consists of eight silicon microring switches that are tuned by the thermo-optic effect.For each tested rousting state,the signal-to-noise ratio of the optical router is larger than 13.8 dB at the working wavelength.The routing functionality of the device is verified.We perform 40 Gbps nonreturn to zero code data transmission on its 12 optical links.Meanwhile,data transmission using wavelength division multiplexing on eight channels in the C band(from 1525 to 1565 nm)has been adopted to increase the communication capacity.The optical router’s average energy efficiency is 25.52 fJ/bit.The rising times(10%to 90%)of the eight optical switch elements are less than 10μs and the falling times(90%-10%)are less than 20μs.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10574022 and 10575022)the Funds of Educational Committee of Fujian Province, China (Grant Nos JB07043)
文摘This paper describes the interaction between two spatial modes of the optical fields with a single atom trapped inner coupled double-cavity. Theoretical derivation and numerical simulation with the experimental available parameters show that photon-photon switching and π phase shift of single photons may be achieved with current experimental technology. As the probe and control fields are in different spatial modes, the system is superior for implementing cavity QED-based photonic quantum networks.
基金National Natural Science Foundation of China(NSFC)(61235007,61505104,61605112)Science and Technology Commission of Shanghai Municipality(15ZR1422800,16XD1401400)National Key R&D Program of China(2016YFB0402501)
文摘We propose and experimentally demonstrate a 2×2 thermo-optic(TO) crossbar switch implemented by dual photonic crystal nanobeam(PCN)cavities within a silicon-on-insulator(SOI)platform.By thermally tuning the refractive index of silicon,the resonance wavelength of the PCN cavities can be red-shifted.With the help of the ultrasmall mode volumes of the PCN cavities,only~0.16 mW power is needed to change the switching state.With a spectral passband of 0.09 nm at the 1583.75 nm operation wavelength,the insertion loss(IL)and crosstalk(CT)performances were measured as IL(bar)=-0.2 dB,CT(bar)=-15 dB,IL(cross)=-1.5 dB,and CT(cross)=-15 dB.Furthermore,the thermal tuning efficiency of the fabricated device is as high as1.23 nm/mW.
基金The work of David M Calhoun is supported in part by the Columbia University Optics and Quantum Electronics IGERT under NSF IGERT(DGE-1069240)We thank Gernot Pomrenke,of AFOSR,for his support of the OpSIS effort,through the PECASE award(FA9550-13-1-0027)+2 种基金subcontract 39344 Multi-Terabit-Capable Silicon Photonic Interconnected End-to-End System under DURIP(FA9550-14-1-0198)ongoing funding for OpSIS(FA9550-10-1-0439)This work was further supported in part by the AFOSR Small Business Technology Transfer under Grant FA9550-12-C-0079 and by Portage Bay Photonics.
文摘Integrated photonics offers the possibility of compact,low energy,bandwidth-dense interconnects for large port count spatial optical switches,facilitating flexible and energy efficient data movement in future data communications systems.To achieve widespread adoption,intimate integration with electronics has to be possible,requiring switch design using standard microelectronic foundry processes and available devices.We report on the feasibility of a switch fabric comprised of ubiquitous silicon photonic building blocks,opening the possibility to combine technologies,and materials towards a new path for switch fabric design.Rather than focus on integrating all devices on a single silicon chip die to achieve large port count optical switching,this work shifts the focus towards innovative packaging and integration schemes.In this work,we demonstrate 1×8 and 8×1 microring-based silicon photonic switch building blocks with software control,providing the feasibility of a full 8×8 architecture composed of silicon photonic building blocks.The proposed switch is fully non-blocking,has path-independent insertion loss,low crosstalk,and is straightforward to control.We further analyze this architecture and compare it with other common switching architectures for varying underlying technologies and radices,showing that the proposed architecture favorably scales to very large port counts when considering both crosstalk and architectural footprint.Separating a switch fabric into functional building blocks via multiple photonic integrated circuits offers the advantage of piece-wise manufacturing,packaging,and assembly,potentially reducing the number of optical I/O and electrical contacts on a single die.
基金National Natural Science Foundation of China(NSFC)(61235007,61505104,61605112)863 High-Tech Program(2015AA017001)Science and Technology Commission of Shanghai Municipality(STCSM)(15ZR1422800,16XD1401400)
文摘Mode-and polarization-division multiplexing offer new dimensions to increase the transmission capacity of optical communications. Selective switches are key components in reconfigurable optical network nodes. An on-chip silicon 2 × 2 mode-and polarization-selective switch that can route four data channels on two modes and two polarizations simultaneously is proposed and experimentally demonstrated for the first time, to the best of our knowledge. The overall insertion losses are lower than 8.6 d B. To reduce the inter-modal crosstalk, polarization beam splitters are added to filter the undesired polarizations or modes. The measured inter-modal andintra-modal crosstalk values are below-23.2 and-22.8 d B for all the channels, respectively.
基金Engineering and Physical Sciences Research Council(EPSRC)H2020 European Research Council(ERC)project iPLASMM(321268)+2 种基金Royal SocietyWolfson FoundationEuropean Commission(EC)FP7 project(304179)(Marie Curie Actions)
文摘Strong nonlinearity of plasmonic metamaterials can be designed near their effective plasma frequency in the epsilon-near-zero(ENZ) regime. We explore the realization of an all-optical modulator based on the Au nonlinearity using an ENZ cavity formed by a few Au nanorods inside a Si photonic waveguide. The resulting modulator has robust performance with a modulation depth of about 30 dB/μm and loss less than 0.8 dB for switching energies below 600 fJ. The modulator provides a double advantage of high mode transmission and strong nonlinearity enhancement in the few-nanorod-based design.
基金partially supported by the National Natural Science Foundation of China(Nos.61822508,61571292,and 61535006)
文摘This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A figure of merit(FoM) is introduced to evaluate the switching response of the PADC when a dual-output Mach–Zehnder modulator(MZM) serves as the photonic switch to parallelize the sampled pulse train into two channels. After the optimization of the FoM and utilization of the channel-mismatch compensation algorithm,the system bandwidth of PADC is expanded and the signal-to-distortion ratio is enhanced.