A digital phase-locked loop (DPLL) based on a new digital phase-frequency detector is presented. The self-calibration technique is employed to acquire wide lock range,low jitter, and fast acquisition. The DPLL works...A digital phase-locked loop (DPLL) based on a new digital phase-frequency detector is presented. The self-calibration technique is employed to acquire wide lock range,low jitter, and fast acquisition. The DPLL works from 60 to 600MHz at a supply voltage of 1.8V. It also features a fraetional-N synthesizer with digital 2nd-order sigma-delta noise shaping, which can achieve a short lock time,a high frequency resolution,and an improved phase-noise spectrum. The DPLL has been implemented in SMIC 0. 18μm 1.8V 1P6M CMOS technology. The peak-to-peak jitter is less than 0. 8% of the output clock period and the lock time is less than 150 times of the reference clock period after the pre-divider.展开更多
A capacitor self-calibration circuit used in a successive approximation analog-to-digital converter (SA-ADC) is presented. This capacitor self-calibration circuit can calibrate erroneous data and work with the ADC b...A capacitor self-calibration circuit used in a successive approximation analog-to-digital converter (SA-ADC) is presented. This capacitor self-calibration circuit can calibrate erroneous data and work with the ADC by adding an additional clock period. This circuit is used in a 10 bit 32 Msample/s time-interleaved SA- ADC. The chip is implemented with Chart 0. 25 μm 2. 5 V process and totally occupies an area of 1.4 mm× 1.3 mm. After calibration, the simulated signal-to-noise ratio (SNR) is 59. 586 1 dB and the spurious-free dynamic range (SFDR) is 70. 246 dB at 32 MHz. The measured signal-to-noise and distortion ratio (SINAD) is 44. 82 dB and the SFDR is 63. 760 4 dB when the ADC samples a 5.8 MHz sinusoid wave.展开更多
Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll wor...Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll workpieces, and types of measurement systems and measurement methods have been developed. However, low measurement efficiency and low measurement accuracy caused by setting errors are the common disadvantages for surface profile measurement of microstructured roll workpieces. In order to shorten the measurement time and enhance the measurement accuracy, a method for self-calibration and compensation of setting errors is proposed for surface profile measurement of microstructured roll workpieces. A measurement system is constructed for the measurement, in which a precision spindle is employed to rotate the roll workpiece and an air-bearing displacement sensor with a micro-stylus probe is employed to scan the microstructured surface of the roll workpiece. The resolution of the displacement sensor is 0.14 nm and that of the rotary encoder of the spindle was 0.15r~. Geometrical and mathematical models are established for analyzing the influences of the setting errors of the roll workpiece and the displacement sensor with respect to the axis of the spindle, including the eccentric error of the roll workpiece, the offset error of the sensor axis and the zero point error of the sensor output. Measurement experiments are carded out on a roll workpiece on which periodic microstructures are a period of 133 i^m along the circumferential direction. Experimental results demonstrate the feasibility of the self-compensation method. The proposed method can be used to detect and compensate the setting errors without using any additional accurate artifact.展开更多
On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the m...On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the methods are not suited to directly integrate dynamic production data, such as, hydraulic head and solute concentration, into the study of conductivity distribution. These data, which record the flow and transport processes in the medium, are closely related to the spatial distribution of hydraulic conductivity. In this study, a three-dimensional gradient-based inverse method--the sequential self-calibration (SSC) method--is developed to calibrate a hydraulic conductivity field, initially generated by a geostatistical simulation method, conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one, measured by its mean square error (MSE), is reduced through the SSC conditional study. In comparison with the unconditional results, the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve, and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further, the reduction of uncertainty is spatially dependent, which indicates that good locations, geological structure, and boundary conditions will affect the efficiency of the SSC study results.展开更多
To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) a...To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) attached to its end-effector was presented.Using the relative pose errors between the two adjacent calibration positions of the space robot,the cost function of the calibration was built,which was different from the conventional calibration method.The particle swarm optimization algorithm(PSO) was used to optimize the function to realize the geometrical parameter identification of the space robot.The above calibration method was carried out through self-calibration simulation of a six-DOF space robot whose end-effector was equipped with hand-eye vision.The results showed that after calibration there was a significant improvement of tool pose accuracy in a set of independent reference positions,which verified the feasibility of the method.At the same time,because it was unnecessary for this method to know the transformation matrix from the robot base to the calibration plate,it reduced the complexity of calibration model and shortened the error propagation chain,which benefited to improve the calibration accuracy.展开更多
A key problem that plagues camera self-calibration, namely that the classical self-calibration algorithms are very sensitive to the initial values of the camera intrinsic parameters, is analyzed and a practical soluti...A key problem that plagues camera self-calibration, namely that the classical self-calibration algorithms are very sensitive to the initial values of the camera intrinsic parameters, is analyzed and a practical solution is provided. The effect of the camera intrinsic parameters, mainly the principal point and the skew factor is first discussed. Then a practical method via a controlled motion of the camera is introduced so as to obtain an accurate estimation of these parameters. Feasibility of this approach is illustrated by carrying out comprehensive experiments using synthetic data as well as real image sequences. Unreasonable initial values can often make self-calibration impossible, yet a precise initialization guarantees a better and successful reconstruction. Trying to obtain a more reasonable initialization is worthwhile the effort in camera self-calibration.展开更多
In this study,the problem of bundle adjustment was revisited,and a novel algorithm based on block matrix Cholesky decomposition was proposed to solve the thorny problem of self-calibration bundle adjustment.The innova...In this study,the problem of bundle adjustment was revisited,and a novel algorithm based on block matrix Cholesky decomposition was proposed to solve the thorny problem of self-calibration bundle adjustment.The innovation points are reflected in the following aspects:①The proposed algorithm is not dependent on the Schur complement,and the calculation process is simple and clear;②The complexities of time and space tend to O(n)in the context of world point number is far greater than that of images and cameras,so the calculation magnitude and memory consumption can be reduced significantly;③The proposed algorithm can carry out self-calibration bundle adjustment in single-camera,multi-camera,and variable-camera modes;④Some measures are employed to improve the optimization effects.Experimental tests showed that the proposed algorithm has the ability to achieve state-of-the-art performance in accuracy and robustness,and it has a strong adaptability as well,because the optimized results are accurate and robust even if the initial values have large deviations from the truth.This study could provide theoretical guidance and technical support for the image-based positioning and 3D reconstruction in the fields of photogrammetry,computer vision and robotics.展开更多
An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the ...An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the positionbased visual servo technique which exploits the singular value property of the essential matrix. Specifically, a suitable dynamic online cost function is generated according to the property of the three singular values. The visual servo process is carried out simultaneous to the dynamic self-calibration, and then the cost function is minimized using the adaptive genetic algorithm instead of the gradient descent method in G. Chesi's approach. Moreover, this method overcomes the limitation that the initial parameters must be selected close to the true value, which is not constant in many cases. It is not necessary to know exactly the camera intrinsic parameters when using our approach, instead, coarse coding bounds of the five parameters are enough for the algorithm, which can be done once and for all off-line. Besides, this algorithm does not require knowledge of the 3D model of the object. Simulation experiments are carried out and the results demonstrate that the proposed approach provides a fast convergence speed and robustness against unpredictable perturbations of camera parameters, and it is an effective and efficient visual servo algorithm.展开更多
Laser tracking system (LTS) is an advanced device for large size 3D coordinates measuring with the advantages of broad range, high speed and high accuracy. However, its measuring accuracy is highly dominated by the ...Laser tracking system (LTS) is an advanced device for large size 3D coordinates measuring with the advantages of broad range, high speed and high accuracy. However, its measuring accuracy is highly dominated by the geometric errors of the tracking mirror mechanism. Proper calibration of LTS is essential prior to the use of it for metrology. A kinematics model that describes not only the motion but also the geometric variations of LTS is developed. Through error analysis of the proposed model, it is claimed that gimbals axis misalignments and tracking mirror center off-set are the key contributors to measuring errors of LTS. A self-calibration method is presented of calibrating LTS with planar constraints. Various calibration strategies utilizing single-plane and multiple-plane constraints are proposed for different situations. For each calibration strategy, issues about the error parameter estimation of LTS are exploded to find out in which conditions these parameters can be uniquely estimated. Moreover, these conditions reveal the applicability of the planar constraints to LTS self-calibration. Intensive studies have been made to check validity of the theoretical results. The results show that the measuring accuracy of LTS has increased by 5 times since this technique for calibration is used.展开更多
In the field of converting simulation surveying and traditional close range photogrammetry, it has been developed so far to survey objects by commercial digital camera and this technique is applied widely in every par...In the field of converting simulation surveying and traditional close range photogrammetry, it has been developed so far to survey objects by commercial digital camera and this technique is applied widely in every part of production. In order to get three-dimensional information of objects, commercial digital camera must be examined. For a long time, digital camera has been examined by DLT. Then there must be a high-precision control field. For realizing surveying without control points, a method for self-calibration is proposed.展开更多
Aiming at piezoresistive pressure sensors, this paper studies simulation of standard pressure by using benchmark current source and self-calibration of the sampling data characteristics. A data fusion algorithm for sa...Aiming at piezoresistive pressure sensors, this paper studies simulation of standard pressure by using benchmark current source and self-calibration of the sampling data characteristics. A data fusion algorithm for sample set is presented which transforms a surface problem into a curve fitting and interpolation problem. The simulation result shows that benchmark current source simulating pressure is successful and data fusion algorithm is effective. The maximum measurement error is only 0.098 kPa and maximum relative error is 0.92% at 0-45 kPa and -10-45~C.展开更多
An accurate and fast three-step self-calibrating generalized phase-shifting interferomertry(SGPSI) is proposed. In this approach, two new phase-shifting signals are constructed by the difference interferograms normali...An accurate and fast three-step self-calibrating generalized phase-shifting interferomertry(SGPSI) is proposed. In this approach, two new phase-shifting signals are constructed by the difference interferograms normalization and noise suppressing, then the unknown phase shift between the two difference phase-shifting signals is estimated quickly through searching the minimum coefficient of variation of the modulation amplitude, a limited number of pixels are selected to participate in the search process to further save time, and finally the phase is reconstructed through the searched phase shift. Through the reconstruction of phase map by the simulation and experiment, and the comparison with several mature algorithms, the good performance of the proposed algorithm is proved, and it eliminates the limitation of requiring more than three phase-shifting interferograms for high-precision SGPSI. We expect this method to be widely used in the future.展开更多
Objective:To prospectively follow up a cohort of anterior urethral stricture disease patients managed with balloon dilation(BD)for 3 years to evaluate the long-term outcomes and to study factors that contribute to rec...Objective:To prospectively follow up a cohort of anterior urethral stricture disease patients managed with balloon dilation(BD)for 3 years to evaluate the long-term outcomes and to study factors that contribute to recurrence.Methods:This study included men who had urethral BD for significant anterior urethral stricture disease between January 2017 and March 2019.Data about the patient age,stricture characteristics,and recurrence date were recorded,along with information on postoperative indwelling catheter use and operative complications.Furthermore,information about the self-calibration procedure was collected and where available,free flow(FF)measurements during the follow-up period were recorded and analyzed.Success was defined as a lack of symptoms and acceptable FF rates(maximum flow rate>12 mL/s).Results:The final analysis was conducted on 187 patients.The mean follow-up period was 37 months.The long-term overall success rate at the end of our study was 66.8%.Our recurrence rate was 7.4%at 12 months,24.7%at 24 months,and reached 33.2%at the end of our study.The time to recurrence ranged from 91 days to 1635 days,with a mean of 670 days.The stricture-free survival was significantly shorter with lengthy peno-bulbar(p=0.031)and multiple strictures(p=0.015),and in the group of patients who were not committed to self-calibration protocol(p<0.011).However,post-procedural self-calibration was the most important factor that may have decreased the incidence of recurrence(odds ratioZ5.85).Adjuvant self-calibration after BD not only reduced the recurrence rate from 85.4%in the non-self-calibration group to 15.1%in the self-calibration one(p<0.001),but also improved the overall stricture-free survival and FF parameters.展开更多
Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAAD...Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAADC by adding additional calibration clock cycles to pursue high accuracy and low power consumption, and the calibrated resolution can be up to 14bit. This circuit is used in a 10bit 3Msps successive approximation ADC. This chip is realized with an SMIC 0. 18μm 1.8V process and occupies 0.25mm^2 . It consumes 3. 1mW when operating at 1.8MHz. The measured SINAD is 55. 9068dB, SFDR is 64. 5767dB, and THD is - 74. 8889dB when sampling a 320kHz sine wave.展开更多
The signal to noise ratio (SNR) of conventional sigma delta analog to digital converter (∑△ADC) reduces with input signal strength. The existing concept of adaptive quantization is applied to the design of ∑△A...The signal to noise ratio (SNR) of conventional sigma delta analog to digital converter (∑△ADC) reduces with input signal strength. The existing concept of adaptive quantization is applied to the design of ∑△ADC to improve SNR with high dynamic range. An adaptive algorithm and its circuit implementation is proposed. Because of the error due to the circuit implementation, an error self-calibration circuit is also designed. Simulation results indicate that SNR can he nearly independent of the signal strength.展开更多
Based on the monthly precipitation and air temperature from 1960 to 1989 in the Luanhe River Basin, the standardized precipitation evapotranspiration index (SPEI) and standardized precipitation index (SPI) at thre...Based on the monthly precipitation and air temperature from 1960 to 1989 in the Luanhe River Basin, the standardized precipitation evapotranspiration index (SPEI) and standardized precipitation index (SPI) at three- and six-month time scales and the self-calibrating Palmer drought severity index (sc-PDSI) were calculated to evaluate droughts in the study area. Temporal variations of the drought severity from 1960 to 1989 were analyzed and compared based on the results of different drought indices, and some typical drought events were identified. Spatial distributions of the drought severity according to the indices were also plotted and investigated. The results reveal the following: the performances of different drought indices are closely associated with the drought duration and the dominant factors of droughts; the SPEI is more accurate than the SPI when both evaporation and precipitation play important roles in drought events; the drought severity shown by the sc-PDSI is generally milder than the actual drought severity from 1960 to 1989; and the evolution of the droughts is usually delayed according to the scPDSI. This study provides valuable references for building drought early warning and mitigation systems in the Luanhe River Basin.展开更多
The Lenglongling Mountains (LLM) located in northeastern part of the Tibet Plateau, belong to a marginal area of the East Asian summer monsoon (EASM) and are sensitive to monsoon dynamics. Two tree-ring width chro...The Lenglongling Mountains (LLM) located in northeastern part of the Tibet Plateau, belong to a marginal area of the East Asian summer monsoon (EASM) and are sensitive to monsoon dynamics. Two tree-ring width chronologies developed from six sites of Picea crassifolia in the LLM were employed to study the regional drought variability. Correlation and temporal correlation analyses showed that relationships between the two chronologies and self-calibrated Palmer Drought Severity Index (sc_PDSI) were significant and stable across time, demonstrating the strength of sc_PDSI in modeling drought conditions in this region. Based on the relationships, the mean sc_PDSI was reconstructed for the period from 1786 to 2013. Dry conditions prevailed during 1817-1819, 1829-1831, 1928-1931 and 1999-2001. Relatively wet periods were identified for 1792-1795 and 1954-1956. Spatial correlations with other fourteen precipitation/drought reconstructed series in previous studies revealed that in arid regions of Northwest China, long-term variability of moisture conditions was synchronous before the 1950s at a decadal scale (1791-1954). In northwestern margin of the EASM, most of all selected reconstructions had better consistency in low-frequency variation, especially during dry periods, indicating similar regional moisture variations and analogous modes of climate forcing on tree growth in the region.展开更多
Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is pro...Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is proposed.Fine compensation is made in the vicinity of the crystal temperature inflection point by using the non-real-time temperature compensation strategy,and self-calibration system is integrated in the crystal.The method improves the digital compensated phase noise,simplifies the traditional OCXO development system,reduces the cost and shortens the developing cycle.Experiment results show that with a standard reference signal and self-calibration updated data,the oscillator can work stable and achieve its best performence.The performance index of crystal oscillator had an improvement with one to two orders of magnitude on the basis of original technical index.The method is widely used in the improvement of high-end crystal oscillator and atomic clock.展开更多
Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry ...Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry should use wide-angle camera as much as possible is done.Then,the limitation of the single lens camera to expand field angle and the combined wide-angle camera existing on the market not suitable for light load of low altitude UAV(Unmanned Aerial Vehicle)due to excessive weight are pointed out.The characteristics of combined wide-angle low altitude light camera with self-calibration and self-stabilization developed by the author are described,especially the principle of self-calibration for the combination of static error and dynamic error.Based on the practice of large scale mapping,a technical procedure in aerial photography by taking with wide-angle camera and large overlap simultaneously for improving the accuracy of low altitude photogrammetry is proposed.The typical engineering produced data is used to verity the above theoretical analysis.A technical route for increasing accuracy of low altitude photogrammetry with combined wide-angle camera is expounded.展开更多
This paper provides a mixed continuous-time/discrete-time,single-loop,4th-order,4-bit audio-band sigma delta ADC with capacitor digital self-calibration for RC spread compensation.This ADC combines the benefits of CT ...This paper provides a mixed continuous-time/discrete-time,single-loop,4th-order,4-bit audio-band sigma delta ADC with capacitor digital self-calibration for RC spread compensation.This ADC combines the benefits of CT and DT circuits,and the self-calibration control circuits compensate for the variation of the RC product in the continuous-time integrator and for variation in the sampling frequency.Measurement results show that the peak SNR of this ADC reaches 102 dB and the total power consumption is less than 30 mW.展开更多
文摘A digital phase-locked loop (DPLL) based on a new digital phase-frequency detector is presented. The self-calibration technique is employed to acquire wide lock range,low jitter, and fast acquisition. The DPLL works from 60 to 600MHz at a supply voltage of 1.8V. It also features a fraetional-N synthesizer with digital 2nd-order sigma-delta noise shaping, which can achieve a short lock time,a high frequency resolution,and an improved phase-noise spectrum. The DPLL has been implemented in SMIC 0. 18μm 1.8V 1P6M CMOS technology. The peak-to-peak jitter is less than 0. 8% of the output clock period and the lock time is less than 150 times of the reference clock period after the pre-divider.
文摘A capacitor self-calibration circuit used in a successive approximation analog-to-digital converter (SA-ADC) is presented. This capacitor self-calibration circuit can calibrate erroneous data and work with the ADC by adding an additional clock period. This circuit is used in a 10 bit 32 Msample/s time-interleaved SA- ADC. The chip is implemented with Chart 0. 25 μm 2. 5 V process and totally occupies an area of 1.4 mm× 1.3 mm. After calibration, the simulated signal-to-noise ratio (SNR) is 59. 586 1 dB and the spurious-free dynamic range (SFDR) is 70. 246 dB at 32 MHz. The measured signal-to-noise and distortion ratio (SINAD) is 44. 82 dB and the SFDR is 63. 760 4 dB when the ADC samples a 5.8 MHz sinusoid wave.
文摘Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll workpieces, and types of measurement systems and measurement methods have been developed. However, low measurement efficiency and low measurement accuracy caused by setting errors are the common disadvantages for surface profile measurement of microstructured roll workpieces. In order to shorten the measurement time and enhance the measurement accuracy, a method for self-calibration and compensation of setting errors is proposed for surface profile measurement of microstructured roll workpieces. A measurement system is constructed for the measurement, in which a precision spindle is employed to rotate the roll workpiece and an air-bearing displacement sensor with a micro-stylus probe is employed to scan the microstructured surface of the roll workpiece. The resolution of the displacement sensor is 0.14 nm and that of the rotary encoder of the spindle was 0.15r~. Geometrical and mathematical models are established for analyzing the influences of the setting errors of the roll workpiece and the displacement sensor with respect to the axis of the spindle, including the eccentric error of the roll workpiece, the offset error of the sensor axis and the zero point error of the sensor output. Measurement experiments are carded out on a roll workpiece on which periodic microstructures are a period of 133 i^m along the circumferential direction. Experimental results demonstrate the feasibility of the self-compensation method. The proposed method can be used to detect and compensate the setting errors without using any additional accurate artifact.
基金This study is partially supported by the Program of Outstanding Overseas Youth Chinese Scholar,the National Natural Science Foundation of China (No. 40528003)partially supported by USA National Science Foundation.
文摘On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the methods are not suited to directly integrate dynamic production data, such as, hydraulic head and solute concentration, into the study of conductivity distribution. These data, which record the flow and transport processes in the medium, are closely related to the spatial distribution of hydraulic conductivity. In this study, a three-dimensional gradient-based inverse method--the sequential self-calibration (SSC) method--is developed to calibrate a hydraulic conductivity field, initially generated by a geostatistical simulation method, conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one, measured by its mean square error (MSE), is reduced through the SSC conditional study. In comparison with the unconditional results, the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve, and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further, the reduction of uncertainty is spatially dependent, which indicates that good locations, geological structure, and boundary conditions will affect the efficiency of the SSC study results.
基金Projects(60775049,60805033) supported by the National Natural Science Foundation of ChinaProject(2007AA704317) supported by the National High Technology Research and Development Program of China
文摘To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) attached to its end-effector was presented.Using the relative pose errors between the two adjacent calibration positions of the space robot,the cost function of the calibration was built,which was different from the conventional calibration method.The particle swarm optimization algorithm(PSO) was used to optimize the function to realize the geometrical parameter identification of the space robot.The above calibration method was carried out through self-calibration simulation of a six-DOF space robot whose end-effector was equipped with hand-eye vision.The results showed that after calibration there was a significant improvement of tool pose accuracy in a set of independent reference positions,which verified the feasibility of the method.At the same time,because it was unnecessary for this method to know the transformation matrix from the robot base to the calibration plate,it reduced the complexity of calibration model and shortened the error propagation chain,which benefited to improve the calibration accuracy.
文摘A key problem that plagues camera self-calibration, namely that the classical self-calibration algorithms are very sensitive to the initial values of the camera intrinsic parameters, is analyzed and a practical solution is provided. The effect of the camera intrinsic parameters, mainly the principal point and the skew factor is first discussed. Then a practical method via a controlled motion of the camera is introduced so as to obtain an accurate estimation of these parameters. Feasibility of this approach is illustrated by carrying out comprehensive experiments using synthetic data as well as real image sequences. Unreasonable initial values can often make self-calibration impossible, yet a precise initialization guarantees a better and successful reconstruction. Trying to obtain a more reasonable initialization is worthwhile the effort in camera self-calibration.
基金National Natural Science Foundation of China(Nos.41571410,41977067,42171422)。
文摘In this study,the problem of bundle adjustment was revisited,and a novel algorithm based on block matrix Cholesky decomposition was proposed to solve the thorny problem of self-calibration bundle adjustment.The innovation points are reflected in the following aspects:①The proposed algorithm is not dependent on the Schur complement,and the calculation process is simple and clear;②The complexities of time and space tend to O(n)in the context of world point number is far greater than that of images and cameras,so the calculation magnitude and memory consumption can be reduced significantly;③The proposed algorithm can carry out self-calibration bundle adjustment in single-camera,multi-camera,and variable-camera modes;④Some measures are employed to improve the optimization effects.Experimental tests showed that the proposed algorithm has the ability to achieve state-of-the-art performance in accuracy and robustness,and it has a strong adaptability as well,because the optimized results are accurate and robust even if the initial values have large deviations from the truth.This study could provide theoretical guidance and technical support for the image-based positioning and 3D reconstruction in the fields of photogrammetry,computer vision and robotics.
基金the National Natural Science Foundation of China (No.60675048)Science and Technology Research Project of the Ministry of Education (No.204181).
文摘An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the positionbased visual servo technique which exploits the singular value property of the essential matrix. Specifically, a suitable dynamic online cost function is generated according to the property of the three singular values. The visual servo process is carried out simultaneous to the dynamic self-calibration, and then the cost function is minimized using the adaptive genetic algorithm instead of the gradient descent method in G. Chesi's approach. Moreover, this method overcomes the limitation that the initial parameters must be selected close to the true value, which is not constant in many cases. It is not necessary to know exactly the camera intrinsic parameters when using our approach, instead, coarse coding bounds of the five parameters are enough for the algorithm, which can be done once and for all off-line. Besides, this algorithm does not require knowledge of the 3D model of the object. Simulation experiments are carried out and the results demonstrate that the proposed approach provides a fast convergence speed and robustness against unpredictable perturbations of camera parameters, and it is an effective and efficient visual servo algorithm.
基金National Natural Science Foundation of China (No. 50475038).
文摘Laser tracking system (LTS) is an advanced device for large size 3D coordinates measuring with the advantages of broad range, high speed and high accuracy. However, its measuring accuracy is highly dominated by the geometric errors of the tracking mirror mechanism. Proper calibration of LTS is essential prior to the use of it for metrology. A kinematics model that describes not only the motion but also the geometric variations of LTS is developed. Through error analysis of the proposed model, it is claimed that gimbals axis misalignments and tracking mirror center off-set are the key contributors to measuring errors of LTS. A self-calibration method is presented of calibrating LTS with planar constraints. Various calibration strategies utilizing single-plane and multiple-plane constraints are proposed for different situations. For each calibration strategy, issues about the error parameter estimation of LTS are exploded to find out in which conditions these parameters can be uniquely estimated. Moreover, these conditions reveal the applicability of the planar constraints to LTS self-calibration. Intensive studies have been made to check validity of the theoretical results. The results show that the measuring accuracy of LTS has increased by 5 times since this technique for calibration is used.
文摘In the field of converting simulation surveying and traditional close range photogrammetry, it has been developed so far to survey objects by commercial digital camera and this technique is applied widely in every part of production. In order to get three-dimensional information of objects, commercial digital camera must be examined. For a long time, digital camera has been examined by DLT. Then there must be a high-precision control field. For realizing surveying without control points, a method for self-calibration is proposed.
基金Project supported by the National Natural Science Foundation of China (Grant No.40265001), and the Science Foundation of Yunnan Province (Grant No.2002C0038M)
文摘Aiming at piezoresistive pressure sensors, this paper studies simulation of standard pressure by using benchmark current source and self-calibration of the sampling data characteristics. A data fusion algorithm for sample set is presented which transforms a surface problem into a curve fitting and interpolation problem. The simulation result shows that benchmark current source simulating pressure is successful and data fusion algorithm is effective. The maximum measurement error is only 0.098 kPa and maximum relative error is 0.92% at 0-45 kPa and -10-45~C.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61905039)Jilin Scientific and Technological Development Program, China (Grant No. 20190701018GH)+1 种基金Education Department of Jilin Province, China (Grant No. JJKH20190691KJ)State Key Laboratory of Applied Optics.
文摘An accurate and fast three-step self-calibrating generalized phase-shifting interferomertry(SGPSI) is proposed. In this approach, two new phase-shifting signals are constructed by the difference interferograms normalization and noise suppressing, then the unknown phase shift between the two difference phase-shifting signals is estimated quickly through searching the minimum coefficient of variation of the modulation amplitude, a limited number of pixels are selected to participate in the search process to further save time, and finally the phase is reconstructed through the searched phase shift. Through the reconstruction of phase map by the simulation and experiment, and the comparison with several mature algorithms, the good performance of the proposed algorithm is proved, and it eliminates the limitation of requiring more than three phase-shifting interferograms for high-precision SGPSI. We expect this method to be widely used in the future.
文摘Objective:To prospectively follow up a cohort of anterior urethral stricture disease patients managed with balloon dilation(BD)for 3 years to evaluate the long-term outcomes and to study factors that contribute to recurrence.Methods:This study included men who had urethral BD for significant anterior urethral stricture disease between January 2017 and March 2019.Data about the patient age,stricture characteristics,and recurrence date were recorded,along with information on postoperative indwelling catheter use and operative complications.Furthermore,information about the self-calibration procedure was collected and where available,free flow(FF)measurements during the follow-up period were recorded and analyzed.Success was defined as a lack of symptoms and acceptable FF rates(maximum flow rate>12 mL/s).Results:The final analysis was conducted on 187 patients.The mean follow-up period was 37 months.The long-term overall success rate at the end of our study was 66.8%.Our recurrence rate was 7.4%at 12 months,24.7%at 24 months,and reached 33.2%at the end of our study.The time to recurrence ranged from 91 days to 1635 days,with a mean of 670 days.The stricture-free survival was significantly shorter with lengthy peno-bulbar(p=0.031)and multiple strictures(p=0.015),and in the group of patients who were not committed to self-calibration protocol(p<0.011).However,post-procedural self-calibration was the most important factor that may have decreased the incidence of recurrence(odds ratioZ5.85).Adjuvant self-calibration after BD not only reduced the recurrence rate from 85.4%in the non-self-calibration group to 15.1%in the self-calibration one(p<0.001),but also improved the overall stricture-free survival and FF parameters.
文摘Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAADC by adding additional calibration clock cycles to pursue high accuracy and low power consumption, and the calibrated resolution can be up to 14bit. This circuit is used in a 10bit 3Msps successive approximation ADC. This chip is realized with an SMIC 0. 18μm 1.8V process and occupies 0.25mm^2 . It consumes 3. 1mW when operating at 1.8MHz. The measured SINAD is 55. 9068dB, SFDR is 64. 5767dB, and THD is - 74. 8889dB when sampling a 320kHz sine wave.
文摘The signal to noise ratio (SNR) of conventional sigma delta analog to digital converter (∑△ADC) reduces with input signal strength. The existing concept of adaptive quantization is applied to the design of ∑△ADC to improve SNR with high dynamic range. An adaptive algorithm and its circuit implementation is proposed. Because of the error due to the circuit implementation, an error self-calibration circuit is also designed. Simulation results indicate that SNR can he nearly independent of the signal strength.
基金supported by the National Natural Science Foundation of China(Grant No.41171220)the Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education of China(Grant No.IRT13062)+2 种基金the Programme of Introducing Talents of Discipline to Universities(the 111 Project,Grant No.B08048)the Jiangsu Provincial Collaborative Innovation Center for World Water Valley and Water Ecological Civilizationthe National Cooperative Innovation Center for Water Safety and Hydro-Science
文摘Based on the monthly precipitation and air temperature from 1960 to 1989 in the Luanhe River Basin, the standardized precipitation evapotranspiration index (SPEI) and standardized precipitation index (SPI) at three- and six-month time scales and the self-calibrating Palmer drought severity index (sc-PDSI) were calculated to evaluate droughts in the study area. Temporal variations of the drought severity from 1960 to 1989 were analyzed and compared based on the results of different drought indices, and some typical drought events were identified. Spatial distributions of the drought severity according to the indices were also plotted and investigated. The results reveal the following: the performances of different drought indices are closely associated with the drought duration and the dominant factors of droughts; the SPEI is more accurate than the SPI when both evaporation and precipitation play important roles in drought events; the drought severity shown by the sc-PDSI is generally milder than the actual drought severity from 1960 to 1989; and the evolution of the droughts is usually delayed according to the scPDSI. This study provides valuable references for building drought early warning and mitigation systems in the Luanhe River Basin.
基金funded by the National Natural Science Foundation of China (51309134)the National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China (J1210065)+1 种基金the Research Starting Funds for Imported Talents,Ningxia University (BQD2012011)the Natural Science Funds,Ningxia University (ZR1233)
文摘The Lenglongling Mountains (LLM) located in northeastern part of the Tibet Plateau, belong to a marginal area of the East Asian summer monsoon (EASM) and are sensitive to monsoon dynamics. Two tree-ring width chronologies developed from six sites of Picea crassifolia in the LLM were employed to study the regional drought variability. Correlation and temporal correlation analyses showed that relationships between the two chronologies and self-calibrated Palmer Drought Severity Index (sc_PDSI) were significant and stable across time, demonstrating the strength of sc_PDSI in modeling drought conditions in this region. Based on the relationships, the mean sc_PDSI was reconstructed for the period from 1786 to 2013. Dry conditions prevailed during 1817-1819, 1829-1831, 1928-1931 and 1999-2001. Relatively wet periods were identified for 1792-1795 and 1954-1956. Spatial correlations with other fourteen precipitation/drought reconstructed series in previous studies revealed that in arid regions of Northwest China, long-term variability of moisture conditions was synchronous before the 1950s at a decadal scale (1791-1954). In northwestern margin of the EASM, most of all selected reconstructions had better consistency in low-frequency variation, especially during dry periods, indicating similar regional moisture variations and analogous modes of climate forcing on tree growth in the region.
基金Supported by the National Natural Science Foundation of China (10978017)the Open Fund of Key Laboratory of Time and Frequency Primary Standards (CAS)+2 种基金the Postdoctoral Grant of China (94469)the Basic and Advanced Technology Research Foundation of Hennan Province (122300410169)the Fundamental Research Funds for the Central Universities
文摘Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is proposed.Fine compensation is made in the vicinity of the crystal temperature inflection point by using the non-real-time temperature compensation strategy,and self-calibration system is integrated in the crystal.The method improves the digital compensated phase noise,simplifies the traditional OCXO development system,reduces the cost and shortens the developing cycle.Experiment results show that with a standard reference signal and self-calibration updated data,the oscillator can work stable and achieve its best performence.The performance index of crystal oscillator had an improvement with one to two orders of magnitude on the basis of original technical index.The method is widely used in the improvement of high-end crystal oscillator and atomic clock.
文摘Firstly,the relationship between the accuracy of low altitude aerial photogrammetry and the field angle of camera is made by a quantitative analysis from the theory.The conclusion that the low altitude photogrammetry should use wide-angle camera as much as possible is done.Then,the limitation of the single lens camera to expand field angle and the combined wide-angle camera existing on the market not suitable for light load of low altitude UAV(Unmanned Aerial Vehicle)due to excessive weight are pointed out.The characteristics of combined wide-angle low altitude light camera with self-calibration and self-stabilization developed by the author are described,especially the principle of self-calibration for the combination of static error and dynamic error.Based on the practice of large scale mapping,a technical procedure in aerial photography by taking with wide-angle camera and large overlap simultaneously for improving the accuracy of low altitude photogrammetry is proposed.The typical engineering produced data is used to verity the above theoretical analysis.A technical route for increasing accuracy of low altitude photogrammetry with combined wide-angle camera is expounded.
文摘This paper provides a mixed continuous-time/discrete-time,single-loop,4th-order,4-bit audio-band sigma delta ADC with capacitor digital self-calibration for RC spread compensation.This ADC combines the benefits of CT and DT circuits,and the self-calibration control circuits compensate for the variation of the RC product in the continuous-time integrator and for variation in the sampling frequency.Measurement results show that the peak SNR of this ADC reaches 102 dB and the total power consumption is less than 30 mW.