Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,t...Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,the base-height ratio,intersection angle,overlap,and ground control points,etc.,which are rarely quantified in real-world applications.To answer this question,in this paper,we take a data-driven approach by analyzing hundreds of terrestrial stereo image configurations through a typical SfM algorithm.Two main meta-parameters with respect to base-height ratio and intersection angle are analyzed.Following the results,we propose a Skeletal Camera Network(SCN)and embed it into the SfM to lead to a novel SfM scheme called SCN-SfM,which limits tie-point matching to the remaining connected image pairs in SCN.The proposed method was applied in three terrestrial datasets.Experimental results have demonstrated the effectiveness of the proposed SCN-SfM to achieve 3D geometry with higher accuracy and fast time efficiency compared to the typical SfM method,whereas the completeness of the geometry is comparable.展开更多
Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required.In this paper,we investigate the unwrapping,epipolar geometry and stereo rectification issues fo...Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required.In this paper,we investigate the unwrapping,epipolar geometry and stereo rectification issues for omnidirectional vision when the particular mirror model and the camera parameters are unknown in priori.First,the omnidirectional camera is calibrated under the Taylor model,and the parameters related to this model are obtained.In order to make the classical computer vision algorithms of conventional perspective cameras applicable,the ring omnidirectional image is unwrapped into two kinds of panoramas:cylinder and cuboid.Then the epipolar geometry of arbitrary camera configuration is analyzed and the essential matrix is deduced with its properties being indicated for ring images.After that,a simple stereo rectification method based on the essential matrix and the conformal mapping is proposed.Simulations and real data experimental results illustrate that our methods are effective for the omnidirectional camera under the constraint of a single view point.展开更多
基金National Natural Science Foundation of China(No.41701534)Open Fund of State Key Laboratory of Coal Resources and Safe Mining(No.SKLCRSM19KFA01)+1 种基金Ecological and Smart Mine Joint Foundation of Hebei Province(No.E2020402086)State Key Laboratory ofGeohazard Prevention and Geoenvironment Protection(No.SKLGP2019K015)
文摘Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,the base-height ratio,intersection angle,overlap,and ground control points,etc.,which are rarely quantified in real-world applications.To answer this question,in this paper,we take a data-driven approach by analyzing hundreds of terrestrial stereo image configurations through a typical SfM algorithm.Two main meta-parameters with respect to base-height ratio and intersection angle are analyzed.Following the results,we propose a Skeletal Camera Network(SCN)and embed it into the SfM to lead to a novel SfM scheme called SCN-SfM,which limits tie-point matching to the remaining connected image pairs in SCN.The proposed method was applied in three terrestrial datasets.Experimental results have demonstrated the effectiveness of the proposed SCN-SfM to achieve 3D geometry with higher accuracy and fast time efficiency compared to the typical SfM method,whereas the completeness of the geometry is comparable.
基金supported by the National Natural Science Foundation of China (Nos.60502006,60534070 and 90820306)the Science and Technology Plan of Zhejiang Province,China (No.2007C21007)
文摘Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required.In this paper,we investigate the unwrapping,epipolar geometry and stereo rectification issues for omnidirectional vision when the particular mirror model and the camera parameters are unknown in priori.First,the omnidirectional camera is calibrated under the Taylor model,and the parameters related to this model are obtained.In order to make the classical computer vision algorithms of conventional perspective cameras applicable,the ring omnidirectional image is unwrapped into two kinds of panoramas:cylinder and cuboid.Then the epipolar geometry of arbitrary camera configuration is analyzed and the essential matrix is deduced with its properties being indicated for ring images.After that,a simple stereo rectification method based on the essential matrix and the conformal mapping is proposed.Simulations and real data experimental results illustrate that our methods are effective for the omnidirectional camera under the constraint of a single view point.