A control model of binocular vergence eye movements is presented. The control model can reduce blind areas caused by the double cameras in motion platform. In order to validate the model performance, an experimental p...A control model of binocular vergence eye movements is presented. The control model can reduce blind areas caused by the double cameras in motion platform. In order to validate the model performance, an experimental platform and its control system based on TMS320LF2407 are designed. The control system has its compacted configuration and high reliability. The simulation and experimental results show that the control system can realize binocular vergence movements. Compared with the conventional moving double cameras system, this new system can considerably reduce blind areas.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.60605028, 50975168)National Hi-tech Research and Development Program of China (Grant Nos.2007AA04Z225, 2009AA04Z211)+1 种基金Program for Excellent Young Teachers of Shanghai (Grant Nos.07Q14024,07QH14006)Shuguang Program of Shanghai (Grant No.07SG47)
文摘A control model of binocular vergence eye movements is presented. The control model can reduce blind areas caused by the double cameras in motion platform. In order to validate the model performance, an experimental platform and its control system based on TMS320LF2407 are designed. The control system has its compacted configuration and high reliability. The simulation and experimental results show that the control system can realize binocular vergence movements. Compared with the conventional moving double cameras system, this new system can considerably reduce blind areas.