The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires f...The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires field testing and canbe time-consuming and labor-intensive. In contrast, the cone penetration test (CPT) provides a more convenientmethod and offers detailed and continuous information about soil layers. In this study, the feature matrix based onCPT data is proposed to predict the standard penetration test blow count N. The featurematrix comprises the CPTcharacteristic parameters at specific depths, such as tip resistance qc, sleeve resistance f s, and depth H. To fuse thefeatures on the matrix, the convolutional neural network (CNN) is employed for feature extraction. Additionally,Genetic Algorithm (GA) is utilized to obtain the best combination of convolutional kernels and the number ofneurons. The study evaluated the robustness of the proposed model using multiple engineering field data sets.Results demonstrated that the proposed model outperformed conventional methods in predicting N values forvarious soil categories, including sandy silt, silty sand, and clayey silt. Finally, the proposed model was employedfor liquefaction discrimination. The liquefaction discrimination based on the predicted N values was comparedwith the measured N values, and the results showed that the discrimination results were in 75% agreement. Thestudy has important practical application value for foundation liquefaction engineering. Also, the novel methodadopted in this research provides new ideas and methods for research in related fields, which is of great academicsignificance.展开更多
Nano drug delivery systems have made significant progress in delivering anticancer drugs camptothecin(CPT).However,many challenges for CPT delivery remain,including low drug loading efficiency,premature drug leakage,a...Nano drug delivery systems have made significant progress in delivering anticancer drugs camptothecin(CPT).However,many challenges for CPT delivery remain,including low drug loading efficiency,premature drug leakage,and poor cellular internalization.Herein,we report a novel dual-sensitive polypeptide-based micelle with remarkably high drug loading of CPT for cancer therapy.This self-assembled micelle possesses the following essential components for CPT:(1)pH-sensitive PEG(OHC-PEG-CHO)for prolonging blood circulation and allowing biocompatibility by shielding the cationic micelles,which can be detached under the tumor acidic microenvironment and facilitates the cellular uptake;(2)polypeptide polylysine-polyphenylalanine(PKF)synthesized via ring-opening polymerization for micelle formation and CPT analogue loading;(3)dimeric CPT(DCPT)with redox-sensitive linker for increasing CPT loading and ensuring drug release at tumor sites.Interestingly,the linear-like morphology of PEG-PKF/DCPT micelles was able to enhance their cellular internalization when compared with the spherical blank PKF micelles.Also,the anticancer efficacy of DCPT against lung cancer cells was significantly improved by the micelle formation.In conclusion,this work provides a promising strategy facilitating the safety and effective application of CPT in cancer therapy.展开更多
The cone penetration test(CPT)contributes to the design and analysis of piles regarding geometry,installation effect,and pile capacity(shaft and toe resistance).MiniCone,as an alternative to CPT sounding,has been used...The cone penetration test(CPT)contributes to the design and analysis of piles regarding geometry,installation effect,and pile capacity(shaft and toe resistance).MiniCone,as an alternative to CPT sounding,has been used to carry outfield and laboratory investigations by physical modeling.More tests can be practically carried out through light equipment and small soil mass,involving fewer errors caused by boundary conditions.Furthermore,it can be used for in situ testing,such as quality control,assessment of ground improvement,and subgrade characterization.A database comprising MiniCone and CPT records infield and physical modeling is proposed with a variety of cone diameters.The case study records in the database have been obtained from 140 tests compiled from data from 26 sources.The sources include the results of 20 physical modelings andfield data from six sites in 10 countries.The data comprise MiniCone and CPT cone tip resistance(qc),and sleeve friction(fs).The different cones are used in sandy,silty sand,and clayey soils via simple chambers(1 g),calibration chambers,and frustum confining vessels.In addition,correlations were found in penetration records in terms of physical modeling types,cone diameters,penetration rates,and soil densities.Moreover,qc and fs are related to capacities of pile toes and shafts using proper correlation coefficients less than unity,respectively.Correlations and dominant factors in geotechnical practice between MiniCone,CPT,and pile have been reviewed and discussed.展开更多
Metabolic reprogramming frequently occurs in the majority of cancers,wherein fatty acid oxidation(FAO)is usually induced and serves as a compensatory mechanism to improve energy consumption.Carnitine palmitoyltransfer...Metabolic reprogramming frequently occurs in the majority of cancers,wherein fatty acid oxidation(FAO)is usually induced and serves as a compensatory mechanism to improve energy consumption.Carnitine palmitoyltransferase 1A(CPT1A)is the rate-limiting enzyme for FAO and is widely involved in tumor growth,metastasis,and chemo-/radio-resistance.This review summarizes the most recent advances in understanding the oncogenic roles and mechanisms of CPT1A in tumorigenesis,including in proliferation and tumor growth,invasion and metastasis,and the tumor microenvironment.Importantly,CPT1A has been shown to be a biomarker for diagnosis and prognosis prediction and proved to be a candidate therapeutic target,especially for the treatment of drug-and radiation-resistant tumors.In summary,CPT1A plays remarkable roles in promoting cancer progression and is a potential anticancer therapeutic target.展开更多
Cone penetration testing (CPT) is a cost effective and popular tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic penetrometer into penetrable soils and recording con...Cone penetration testing (CPT) is a cost effective and popular tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic penetrometer into penetrable soils and recording cone bearing (q<sub>c</sub>), sleeve friction (f<sub>c</sub>) and dynamic pore pressure (u) with depth. The measured q<sub>c</sub>, f<sub>s</sub> and u values are utilized to estimate soil type and associated soil properties. A popular method to estimate soil type from CPT measurements is the Soil Behavior Type (SBT) chart. The SBT plots cone resistance vs friction ratio, R<sub>f</sub> [where: R<sub>f</sub> = (f<sub>s</sub>/q<sub>c</sub>)100%]. There are distortions in the CPT measurements which can result in erroneous SBT plots. Cone bearing measurements at a specific depth are blurred or averaged due to q<sub>c</sub> values being strongly influenced by soils within 10 to 30 cone diameters from the cone tip. The q<sub>c</sub>HMM algorithm was developed to address the q<sub>c</sub> blurring/averaging limitation. This paper describes the distortions which occur when obtaining sleeve friction measurements which can in association with q<sub>c</sub> blurring result in significant errors in the calculated R<sub>f</sub> values. This paper outlines a novel and highly effective algorithm for obtaining accurate sleeve friction and friction ratio estimates. The f<sub>c</sub> optimal filter estimation technique is referred to as the OSFE-IFM algorithm. The mathematical details of the OSFE-IFM algorithm are outlined in this paper along with the results from a challenging test bed simulation. The test bed simulation demonstrates that the OSFE-IFM algorithm derives accurate estimates of sleeve friction from measured values. Optimal estimates of cone bearing and sleeve friction result in accurate R<sub>f</sub> values and subsequent accurate estimates of soil behavior type.展开更多
基金the Center University(Grant No.B220202013)Qinglan Project of Jiangsu Province(2022).
文摘The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires field testing and canbe time-consuming and labor-intensive. In contrast, the cone penetration test (CPT) provides a more convenientmethod and offers detailed and continuous information about soil layers. In this study, the feature matrix based onCPT data is proposed to predict the standard penetration test blow count N. The featurematrix comprises the CPTcharacteristic parameters at specific depths, such as tip resistance qc, sleeve resistance f s, and depth H. To fuse thefeatures on the matrix, the convolutional neural network (CNN) is employed for feature extraction. Additionally,Genetic Algorithm (GA) is utilized to obtain the best combination of convolutional kernels and the number ofneurons. The study evaluated the robustness of the proposed model using multiple engineering field data sets.Results demonstrated that the proposed model outperformed conventional methods in predicting N values forvarious soil categories, including sandy silt, silty sand, and clayey silt. Finally, the proposed model was employedfor liquefaction discrimination. The liquefaction discrimination based on the predicted N values was comparedwith the measured N values, and the results showed that the discrimination results were in 75% agreement. Thestudy has important practical application value for foundation liquefaction engineering. Also, the novel methodadopted in this research provides new ideas and methods for research in related fields, which is of great academicsignificance.
基金supported by the National Natural Science Foundation of China (51922111)the Science and Technology Development Fund, Macao SAR (File no. 0124/2019/A3)+1 种基金the University of Macao (File no. MYRG2022-00203-ICMS)Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials (2019B121205002)
文摘Nano drug delivery systems have made significant progress in delivering anticancer drugs camptothecin(CPT).However,many challenges for CPT delivery remain,including low drug loading efficiency,premature drug leakage,and poor cellular internalization.Herein,we report a novel dual-sensitive polypeptide-based micelle with remarkably high drug loading of CPT for cancer therapy.This self-assembled micelle possesses the following essential components for CPT:(1)pH-sensitive PEG(OHC-PEG-CHO)for prolonging blood circulation and allowing biocompatibility by shielding the cationic micelles,which can be detached under the tumor acidic microenvironment and facilitates the cellular uptake;(2)polypeptide polylysine-polyphenylalanine(PKF)synthesized via ring-opening polymerization for micelle formation and CPT analogue loading;(3)dimeric CPT(DCPT)with redox-sensitive linker for increasing CPT loading and ensuring drug release at tumor sites.Interestingly,the linear-like morphology of PEG-PKF/DCPT micelles was able to enhance their cellular internalization when compared with the spherical blank PKF micelles.Also,the anticancer efficacy of DCPT against lung cancer cells was significantly improved by the micelle formation.In conclusion,this work provides a promising strategy facilitating the safety and effective application of CPT in cancer therapy.
文摘The cone penetration test(CPT)contributes to the design and analysis of piles regarding geometry,installation effect,and pile capacity(shaft and toe resistance).MiniCone,as an alternative to CPT sounding,has been used to carry outfield and laboratory investigations by physical modeling.More tests can be practically carried out through light equipment and small soil mass,involving fewer errors caused by boundary conditions.Furthermore,it can be used for in situ testing,such as quality control,assessment of ground improvement,and subgrade characterization.A database comprising MiniCone and CPT records infield and physical modeling is proposed with a variety of cone diameters.The case study records in the database have been obtained from 140 tests compiled from data from 26 sources.The sources include the results of 20 physical modelings andfield data from six sites in 10 countries.The data comprise MiniCone and CPT cone tip resistance(qc),and sleeve friction(fs).The different cones are used in sandy,silty sand,and clayey soils via simple chambers(1 g),calibration chambers,and frustum confining vessels.In addition,correlations were found in penetration records in terms of physical modeling types,cone diameters,penetration rates,and soil densities.Moreover,qc and fs are related to capacities of pile toes and shafts using proper correlation coefficients less than unity,respectively.Correlations and dominant factors in geotechnical practice between MiniCone,CPT,and pile have been reviewed and discussed.
基金funded by the National Natural Science Foundation of China(Nos.82160585 and 81760526)the Yunnan Provincial Research Foundation for Basic Research,China(No.202001AT070028).
文摘Metabolic reprogramming frequently occurs in the majority of cancers,wherein fatty acid oxidation(FAO)is usually induced and serves as a compensatory mechanism to improve energy consumption.Carnitine palmitoyltransferase 1A(CPT1A)is the rate-limiting enzyme for FAO and is widely involved in tumor growth,metastasis,and chemo-/radio-resistance.This review summarizes the most recent advances in understanding the oncogenic roles and mechanisms of CPT1A in tumorigenesis,including in proliferation and tumor growth,invasion and metastasis,and the tumor microenvironment.Importantly,CPT1A has been shown to be a biomarker for diagnosis and prognosis prediction and proved to be a candidate therapeutic target,especially for the treatment of drug-and radiation-resistant tumors.In summary,CPT1A plays remarkable roles in promoting cancer progression and is a potential anticancer therapeutic target.
文摘Cone penetration testing (CPT) is a cost effective and popular tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic penetrometer into penetrable soils and recording cone bearing (q<sub>c</sub>), sleeve friction (f<sub>c</sub>) and dynamic pore pressure (u) with depth. The measured q<sub>c</sub>, f<sub>s</sub> and u values are utilized to estimate soil type and associated soil properties. A popular method to estimate soil type from CPT measurements is the Soil Behavior Type (SBT) chart. The SBT plots cone resistance vs friction ratio, R<sub>f</sub> [where: R<sub>f</sub> = (f<sub>s</sub>/q<sub>c</sub>)100%]. There are distortions in the CPT measurements which can result in erroneous SBT plots. Cone bearing measurements at a specific depth are blurred or averaged due to q<sub>c</sub> values being strongly influenced by soils within 10 to 30 cone diameters from the cone tip. The q<sub>c</sub>HMM algorithm was developed to address the q<sub>c</sub> blurring/averaging limitation. This paper describes the distortions which occur when obtaining sleeve friction measurements which can in association with q<sub>c</sub> blurring result in significant errors in the calculated R<sub>f</sub> values. This paper outlines a novel and highly effective algorithm for obtaining accurate sleeve friction and friction ratio estimates. The f<sub>c</sub> optimal filter estimation technique is referred to as the OSFE-IFM algorithm. The mathematical details of the OSFE-IFM algorithm are outlined in this paper along with the results from a challenging test bed simulation. The test bed simulation demonstrates that the OSFE-IFM algorithm derives accurate estimates of sleeve friction from measured values. Optimal estimates of cone bearing and sleeve friction result in accurate R<sub>f</sub> values and subsequent accurate estimates of soil behavior type.