In [1], a new consequence of the (restricted) wreath product for arbitrary monoids A and B with an underlying set . Let us denote it by . Actually, in the same reference, it has been also defined the generating and re...In [1], a new consequence of the (restricted) wreath product for arbitrary monoids A and B with an underlying set . Let us denote it by . Actually, in the same reference, it has been also defined the generating and relator sets for , and then proved some finite and infinite cases about it. In this paper, by considering the product, we show Green’s relations L and R as well as we present the conditions for this product to be left cancellative, orthodox and finally left (right) inverse(s).展开更多
In his paper “On quasi-separative ‘semigroup’s’”, Krasilnikova, Yu. I. and Novikov, B. V. have studied congruences induced by certain relations on a “semigroup”. They further showed that if the “semigroup” is...In his paper “On quasi-separative ‘semigroup’s’”, Krasilnikova, Yu. I. and Novikov, B. V. have studied congruences induced by certain relations on a “semigroup”. They further showed that if the “semigroup” is quasi separative then the induced congruence is a semilattice congruence. In this paper we continue the study of these relations and the induced congruences i.e., the congruences induced by certain relations on ‘‘semigroup’s”. In this paper mainly it is observed that if S is a quasi-separative and regular “semigroup” then the necessary and sufficient condition for to be the smallest semilattice congruence η is obtained.展开更多
文摘In [1], a new consequence of the (restricted) wreath product for arbitrary monoids A and B with an underlying set . Let us denote it by . Actually, in the same reference, it has been also defined the generating and relator sets for , and then proved some finite and infinite cases about it. In this paper, by considering the product, we show Green’s relations L and R as well as we present the conditions for this product to be left cancellative, orthodox and finally left (right) inverse(s).
文摘In his paper “On quasi-separative ‘semigroup’s’”, Krasilnikova, Yu. I. and Novikov, B. V. have studied congruences induced by certain relations on a “semigroup”. They further showed that if the “semigroup” is quasi separative then the induced congruence is a semilattice congruence. In this paper we continue the study of these relations and the induced congruences i.e., the congruences induced by certain relations on ‘‘semigroup’s”. In this paper mainly it is observed that if S is a quasi-separative and regular “semigroup” then the necessary and sufficient condition for to be the smallest semilattice congruence η is obtained.