Vitamin D co-regulates cell proliferation, differentiation and apoptosis in numerous tissues, including cancers. The known anti-proliferative and pro-apoptotic actions of the active metabolite of vitamin D, 1,25-dihyd...Vitamin D co-regulates cell proliferation, differentiation and apoptosis in numerous tissues, including cancers. The known anti-proliferative and pro-apoptotic actions of the active metabolite of vitamin D, 1,25-dihydroxy-vitamin D [1,25(OH)2D] are mediated through binding to the vitamin D receptor (VDR). Here, we report on the unexpected finding that stable knockdown of VDR expression in the human breast and prostate cancer cell lines, MDA-MB-231 and PC3, strongly induces cell apoptosis and inhibits cell proliferation in vitro. Implantation of these VDR knockdown cells into the mammary fat pad (MDA-MB-231), subcutaneously (PC3) or intra-tibially (both cell lines) in immune-incompetent nude mice resulted in reduced tumor growth associated with increased apoptosis and reduced cell proliferation compared with controls. These growth-retarding effects of VDR knockdown occur in the presence and absence of vitamin D and are independent of whether cells were grown in bone or soft tissues. Transcriptome analysis of VDR knockdown and non-target control cell lines demonstrated that loss of the VDR was associated with significant attenuation in the Wnt/0-catenin signaling pathway. In particular, cytoplasmic and nuclear β-catenin protein levels were reduced with a corresponding downregulation of downstream genes such as Axin2, Cyclin D1, interleukin-6 (IL-6), and IL-8. Stabilization of 0-catenin using the GSK-3β inhibitor BIO partly reversed the growth-retarding effects of VDR knockdown. Our results indicate that the unliganded VDR possesses hitherto unknown functions to promote breast and prostate cancer growth, which appear to be operational not only within but also outside the bone environment. These novel functions contrast with the known anti-proliferative nuclear actions of the liganded VDR and may represent targets for new diagnostic and therapeutic approaches in breast and prostate cancer.展开更多
The Grainyhead-like 3(GRHL3) is involved in epidermal barrier formation, neural tube closure and wound repair. Previous studies have suggested that GRHL3 has been linked to many different types of cancers. However, ...The Grainyhead-like 3(GRHL3) is involved in epidermal barrier formation, neural tube closure and wound repair. Previous studies have suggested that GRHL3 has been linked to many different types of cancers. However, to date, its effects on human colorectal cancer(CRC) has not been clarified yet. Our microarray analysis has indicated predominant GRHL3 expression in CRC. The purpose of this study was to investigate the expression and significance of GRHL3 in CRC tumorigenesis using CRC tissues and paired paracancerous tissues, as well as using distinct CRC cell lines(HT29 and DLD1). We observed increased GRHL3 expression at both m RNA and protein levels in CRC tissues and CRC cell lines using quantitative real-time polymerase chain reaction(q RT-PCR) and Western blotting. Moreover, silencing GRHL3 with si RNA could suppress CRC cell proliferation, viability and migration in vitro. We also found that knockdown of GRHL3 could promote cell cycle arrest at G0/G1 phase in HT29 cells and DLD1 cells, and induce cell apoptosis in HT29 cells. Together, our study revealed the down-regulation of GRHL3 in vitro could inhibit CRC cell activity and trigger cell cycle arrest at G0/G1 phase and apoptosis.展开更多
Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) is a recently identified member of the tumor necrosis factor (TNF) family[1]. Numerous studies indicate that TRAIL can induce apoptosis of cancer cells b...Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) is a recently identified member of the tumor necrosis factor (TNF) family[1]. Numerous studies indicate that TRAIL can induce apoptosis of cancer cells but not of normal cells, pointing to the possibility of developing TRAIL into a cancer drug[2-4]. This review will summary the molecular mechanisms of TRAIL-induced apoptosis and discuss the questions to be resolved in this field.展开更多
基金supported by Cancer Institute NSW CDF fellowship (YZ)Cure Cancer Foundation of Australia (YZ)+3 种基金Cancer Council New South Wales (MJS, YZ, HZ, and CRD)Prostate Cancer Foundation of Australia (MJS, YZ, HZ, and CRD)NH and MRC Early Career Fellowship 596870 (YZ)German Research Foundation HO 5109/2-1 and HO 5109/2-2 (KH)
文摘Vitamin D co-regulates cell proliferation, differentiation and apoptosis in numerous tissues, including cancers. The known anti-proliferative and pro-apoptotic actions of the active metabolite of vitamin D, 1,25-dihydroxy-vitamin D [1,25(OH)2D] are mediated through binding to the vitamin D receptor (VDR). Here, we report on the unexpected finding that stable knockdown of VDR expression in the human breast and prostate cancer cell lines, MDA-MB-231 and PC3, strongly induces cell apoptosis and inhibits cell proliferation in vitro. Implantation of these VDR knockdown cells into the mammary fat pad (MDA-MB-231), subcutaneously (PC3) or intra-tibially (both cell lines) in immune-incompetent nude mice resulted in reduced tumor growth associated with increased apoptosis and reduced cell proliferation compared with controls. These growth-retarding effects of VDR knockdown occur in the presence and absence of vitamin D and are independent of whether cells were grown in bone or soft tissues. Transcriptome analysis of VDR knockdown and non-target control cell lines demonstrated that loss of the VDR was associated with significant attenuation in the Wnt/0-catenin signaling pathway. In particular, cytoplasmic and nuclear β-catenin protein levels were reduced with a corresponding downregulation of downstream genes such as Axin2, Cyclin D1, interleukin-6 (IL-6), and IL-8. Stabilization of 0-catenin using the GSK-3β inhibitor BIO partly reversed the growth-retarding effects of VDR knockdown. Our results indicate that the unliganded VDR possesses hitherto unknown functions to promote breast and prostate cancer growth, which appear to be operational not only within but also outside the bone environment. These novel functions contrast with the known anti-proliferative nuclear actions of the liganded VDR and may represent targets for new diagnostic and therapeutic approaches in breast and prostate cancer.
基金supported by grants from National Natural Science Foundation of China(No.81072152)Natural Science Foundation of Hubei Province(No.2015CFA027)+1 种基金Research Foundation of Health and Family Planning Commission of Hubei Province(No.WJ2015MA010 and No.WJ2017M249)Clinical Medical Research Center of Peritoneal Cancer of Wuhan(No.2015060911020462)
文摘The Grainyhead-like 3(GRHL3) is involved in epidermal barrier formation, neural tube closure and wound repair. Previous studies have suggested that GRHL3 has been linked to many different types of cancers. However, to date, its effects on human colorectal cancer(CRC) has not been clarified yet. Our microarray analysis has indicated predominant GRHL3 expression in CRC. The purpose of this study was to investigate the expression and significance of GRHL3 in CRC tumorigenesis using CRC tissues and paired paracancerous tissues, as well as using distinct CRC cell lines(HT29 and DLD1). We observed increased GRHL3 expression at both m RNA and protein levels in CRC tissues and CRC cell lines using quantitative real-time polymerase chain reaction(q RT-PCR) and Western blotting. Moreover, silencing GRHL3 with si RNA could suppress CRC cell proliferation, viability and migration in vitro. We also found that knockdown of GRHL3 could promote cell cycle arrest at G0/G1 phase in HT29 cells and DLD1 cells, and induce cell apoptosis in HT29 cells. Together, our study revealed the down-regulation of GRHL3 in vitro could inhibit CRC cell activity and trigger cell cycle arrest at G0/G1 phase and apoptosis.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 39925016) the National Key Basic Science Program (Grant No. G19990539) and Peking University.
文摘Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) is a recently identified member of the tumor necrosis factor (TNF) family[1]. Numerous studies indicate that TRAIL can induce apoptosis of cancer cells but not of normal cells, pointing to the possibility of developing TRAIL into a cancer drug[2-4]. This review will summary the molecular mechanisms of TRAIL-induced apoptosis and discuss the questions to be resolved in this field.