Background:Tumor-derived exosomes are involved in tumor progression and immune invasion and might func-tion as promising noninvasive approaches for clinical management.However,there are few reports on exosom-based mar...Background:Tumor-derived exosomes are involved in tumor progression and immune invasion and might func-tion as promising noninvasive approaches for clinical management.However,there are few reports on exosom-based markers for predicting the progression and adjuvant therapy response rate among patients with clear cell renal cell carcinoma(ccRCC).Methods:The signatures differentially expressed in exosomes from tumor and normal tissues from ccRCC pa-tients were correspondingly deregulated in ccRCC tissues.We adopted a two-step strategy,including Lasso and bootstrapping,to construct a novel risk stratification system termed the TDERS(Tumor-Derived Exosome-Related Risk Score).During the testing and validation phases,we leveraged multiple external datasets containing over 2000 RCC cases from eight cohorts and one inhouse cohort to evaluate the accuracy of the TDERS.In addition,enrichment analysis,immune infiltration signatures,mutation landscape and therapy sensitivity between the high and low TDERS groups were compared.Finally,the impact of TDERS on the tumor microenvironment(TME)was also analysed in our single-cell datasets.Results:TDERS consisted of 12 mRNAs deregulated in both exosomes and tissues from patients with ccRCC.TDERS achieved satisfactory performance in both prognosis and immune checkpoint inhibitor(ICI)response across all ccRCC cohorts and other pathological types,since the average area under the curve(AUC)to predict 5-year overall survival(OS)was larger than 0.8 across the four cohorts.Patients in the TDERS high group were resistant to ICIs,while mercaptopurine might function as a promising agent for those patients.Patients with a high TDERS were characterized by coagulation and hypoxia,which induced hampered tumor antigen presentation and relative resistance to ICIs.In addition,single cells from 12 advanced samples validated this phenomenon since the interaction between dendritic cells and macrophages was limited.Finally,PLOD2,which is highly expressed in fibro-and epi-tissue,could be a potential therapeutic target for ccRCC patients since inhibiting PLOD2 altered the malignant phenotype of ccRCC in vitro.Conclusion:As a novel,non-invasive,and repeatable monitoring tool,the TDERS could work as a robust risk stratification system for patients with ccRCC and precisely inform treatment decisions about ICI therapy.展开更多
Background:Recently,researchers have been attracted in identifying the crucial genes related to cancer,which plays important role in cancer diagnosis and treatment.However,in performing the cancer molecular subtype cl...Background:Recently,researchers have been attracted in identifying the crucial genes related to cancer,which plays important role in cancer diagnosis and treatment.However,in performing the cancer molecular subtype classification task from cancer gene expression data,it is challenging to obtain those significant genes due to the high dimensionality and high noise of data.Moreover,the existing methods always suffer from some issues such as premature convergence.Methods:To address those problems,we propose a new ant colony optimization(ACO)algorithm called DACO to classify the cancer gene expression datasets,identifying the essential genes of different diseases.In DACO,first,we propose the initial pheromone concentration based on the weight ranking vector to accelerate the convergence speed;then,a dynamic pheromone volatility factor is designed to prevent the algorithm from getting stuck in the local optimal solution;finally,the pheromone update rule in the Ant Colony System is employed to update the pheromone globally and locally.To demonstrate the performance of the proposed algorithm in classification,different existing approaches are compared with the proposed algorithm on eight high-dimensional cancer gene expression datasets.Results:The experiment results show that the proposed algorithm performs better than other effective methods in terms of classification accuracy and the number of feature sets.It can be used to address the classification problem effectively.Moreover,a renal cell carcinoma dataset is employed to reveal the biological significance of the proposed algorithm from a number of biological analyses.Conclusion:The results demonstrate that CAPS may play a crucial role in the occurrence and development of renal clear cell carcinoma.展开更多
With the advancement of anticancer therapy,there is increasing interest in understanding the tumor microenvi-ronment(TME).Cancer-associated fibroblasts(CAFs)play a pivotal role in the TME and have been the focus of mu...With the advancement of anticancer therapy,there is increasing interest in understanding the tumor microenvi-ronment(TME).Cancer-associated fibroblasts(CAFs)play a pivotal role in the TME and have been the focus of much research in recent years.CAFs play an active role in cancer progression through complex interactions with other cells in the TME,releasing regulatory factors,synthesizing and remodeling the extracellular matrix.How-ever,research on the role of CAFs in renal cell carcinoma(RCC)is still in its nascent stages.Here,we describe the origins and subgroups of CAFs,the roles of CAFs in the development and progression of RCC,the impact of CAFs on RCC prognosis,and the potential of CAFs as treatment targets in RCC.By analyzing CAF subsets,biomarkers,and targeted therapies,we present the significance and contribution of CAFs in RCC research.Furthermore,we highlight the distinct contribution of CAFs in advanced RCC through horizontal comparison with other cancers.This paper provides a comprehensive perspective of recent and foundational studies on the role of CAFs in RCC and other types of cancers and new insights for further study of CAFs in RCC.展开更多
Cancer cell dormancy(CCD)in colorectal cancer(CRC)poses a significant challenge to effective treatment.In CRC,CCD contributes to tumour recurrence,drug resistance,and amplifying the disease's burden.The molecular ...Cancer cell dormancy(CCD)in colorectal cancer(CRC)poses a significant challenge to effective treatment.In CRC,CCD contributes to tumour recurrence,drug resistance,and amplifying the disease's burden.The molecular mechanisms governing CCD and strategies for eliminating dormant cancer cells remain largely unexplored.Therefore,understanding the molecular mechanisms governing dormancy is crucial for improving patient outcomes and developing targeted therapies.This editorial highlights the complex interplay of signalling pathways and factors involved in colorectal CCD,emphasizing the roles of Hippo/YAP,pluripotent transcription factors such as NANOG,HIF-1αsignalling,and Notch signalling pathways.Additionally,ERK/p38α/β/MAPK pathways,AKT signalling pathway,and Extracellular Matrix Metalloproteinase Inducer,along with some potential less explored pathways such as STAT/p53 switch and canonical and non-canonical Wnt and SMAD signalling,are also involved in promoting colorectal CCD.Highlighting their clinical significance,these findings may offer the potential for identifying key dormancy regulator pathways,improving treatment strategies,surmounting drug resistance,and advancing personalized medicine approaches.Moreover,insights into dormancy mechanisms could lead to the development of predictive biomarkers for identifying patients at risk of recurrence and the tailoring of targeted therapies based on individual dormancy profiles.It is essential to conduct further research into these pathways and their modulation to fully comprehend CRC dormancy mechanisms and enhance patient outcomes.展开更多
Renal cell cancer(RCC)remains one of the most lethal types of cancer in adults.Micro RNAs(mi RNAs)play key roles in the pathogenesis of RCC.The role of mi R-206 in RCC has not been fully understood.The purpose of this...Renal cell cancer(RCC)remains one of the most lethal types of cancer in adults.Micro RNAs(mi RNAs)play key roles in the pathogenesis of RCC.The role of mi R-206 in RCC has not been fully understood.The purpose of this study was to examine the role of mi R-206 in the regulation of proliferation and metastasis of RCC and the possible mechanism.mi R-206 expression was detected by reverse transcription?quantitative polymerase chain reaction(RT-q PCR)in RCC cell lines(786-O and OS-RC-2 cells)and clinical samples.MTS[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium]method,colony formation and transwell assay were used to detect the tumor-suppressing ability of mi R-206 in RCC.Luciferase assay was performed to verify the precise target of mi R-206.The results showed that the expression of mi R-206 was significantly down-regulated in RCC tissues and cells.The expression level of cyclin G-associated kinase(GAK),a master regulator of tumor proliferation and metastasis,was up-regulated with the decrease in mi R-206 in RCC tissues as well as RCC cell lines.In addition,the mi R-206 inhibitor promoted the proliferation,migration and invasion of 786-O and OS-RC-2 cells.Bioinformatics combined with luciferase and Western blot assays revealed that mi R-206 inhibited the expression of GAK.Moreover,mi R-206 regulates RCC cell growth partly through targeting GAK.Our study indicated that mi R-206 functions as a tumor suppressor in regulating the proliferation,migration and invasion of RCC by directly targeting GAK,and it holds promises as a potential therapeutic target for RCC.展开更多
Tet methylcytosine dioxygenase 2(TET2)acts as an antioncogene that is investigated in different cancers.But the effects of TET2 in renal cell cancer(RCC)is still known little.Here,quantitative real-time PCR(qRT-PCR),W...Tet methylcytosine dioxygenase 2(TET2)acts as an antioncogene that is investigated in different cancers.But the effects of TET2 in renal cell cancer(RCC)is still known little.Here,quantitative real-time PCR(qRT-PCR),Western blot,and immunofluorescence were performed to exam gene and protein expression.Cell proliferation was measured using Cell Counting Kit-8(CCK-8).Transwell assay was performed to detect cell metastasis viability.Flow cytometry was performed to analyze the cell cycle and cell apoptosis.The effects of TET2 on RCC growth in vivo was analyzed using a mouse xenograft model.We found that TET2 and miR-200c were decreased in RCC tissues,and hypermethylation of miR-200c promoter was found.Overexpression of TET2 promoted miR-200c expression by reducing miR-200c promoter methylation.Additionally,overexpression of TET2 or miR-200c suppressed cell growth and metastasis.Also,knockdown of miR-200c could moderate TET2 mediated cell growth inhibition.Furthermore,we found miR-200c directly regulates Stearoyl-CoA desaturase(SCD)gene expression.Moreover,in vivo experiment results confirmed that TET2 inhibited tumor growth.In conclusion,TET2 acts as an antioncogene in RCC by regulating the miR-200c-SCD axis and providing a potential target for RCC diagnosis and treatment.展开更多
In this study,we used a meta-analysis method to evaluate the relationship between hypoxia-inducible factor-1α(HIF1α)1772C/T gene polymorphism(rs 11549465)and renal cell carcinoma(RCC)/prostate cancer risk.We searche...In this study,we used a meta-analysis method to evaluate the relationship between hypoxia-inducible factor-1α(HIF1α)1772C/T gene polymorphism(rs 11549465)and renal cell carcinoma(RCC)/prostate cancer risk.We searched for relevant studies(before March 1,2019)on Cochrane Library,Embase,and PubMed.Studies meeting the inclusion criteria were recruited into this meta-analysis.The outcome of dichotomous data was showed in the way of odds ratios(OR),and 95%confidence intervals(CI)were also counted.In this investigation,there was no association between HIF1α1772C/T gene polymorphism and susceptibility to RCC in Caucasians,Asians as well as overall populations.In addition,HIF1α1772C/T gene polymorphism was not found to be relevant to the survival in RCC.Interestingly,the T allele was relevant to prostate cancer risk in all populations,but not in Caucasians and Asians.However,the TT genotype and the CC genotype were not related to prostate cancer susceptibility in Asian,Caucasian,and all populations.In conclusion,the T allele of the HIF1α1772C/T gene polymorphism was related to prostate cancer risk in the overall populations.展开更多
We present an unusual case of renal cell cancer(RCC) which relapsed with duodenal metastasis and unveiled itself by gastrointestinal(GI) bleeding.An 80-year old Caucasian gentleman with history of renal cell cancer st...We present an unusual case of renal cell cancer(RCC) which relapsed with duodenal metastasis and unveiled itself by gastrointestinal(GI) bleeding.An 80-year old Caucasian gentleman with history of renal cell cancer status post nephrectomy 11 mo previously,presented with syncope and melena.Computed tomography scan of the abdomen revealed heterogeneous soft tissue mass in the right nephrectomy bed invading the duodenum.Upper GI endoscopic biopsy confirmed the presence of recurrent renal cell cancer.However,due to extensive metastatic disease,the patient was placed on palliative chemotherapy as surgical options were ruled out.Our case report reiterates the fact that renal cell carcinoma can recur with gastrointestinal manifestations and,although a rarity,it should be considered in a patient with a history of malignancy who presents with these symptoms.展开更多
Recent studies suggested that LIM and SH3 protein 1(LASP-1)is a promising therapeutic target for renal cell cancer(RCC).This study aimed to explore the role of LASP-1 in RCC.For this purpose,LASP-1 expression in RCC t...Recent studies suggested that LIM and SH3 protein 1(LASP-1)is a promising therapeutic target for renal cell cancer(RCC).This study aimed to explore the role of LASP-1 in RCC.For this purpose,LASP-1 expression in RCC tissues was analyzed by immunohistochemistry and Western blot analysis.Cell proliferation,migration,invasion,and gene expression were detected by CCK-8 assay,Transwell assay,and Western blot analysis.The results showed that LASP-1 was highly expressed in RCC,and its expression level,t was positively correlated with lymph node metastasis and tumor,nodes,and metastases(TNM)stage.The knockdown of LASP-1 expression significantly inhibited the proliferation of RCC cells,increased the apoptosis rate,and inhibited RCC cell invasion and migration by inhibiting epithelial–mesenchymal transition.We conclude that LASP-1 promotes RCC progression and metastasis and is a promising therapeutic target for RCC.展开更多
BACKGROUND Bevacizumab,an anti-vascular endothelial growth factor(VEGF)monoclonal antibody,inhibits angiogenesis and reduces tumor growth.Serum VEGF-C,lactate dehydrogenase,and inflammatory markers have been reported ...BACKGROUND Bevacizumab,an anti-vascular endothelial growth factor(VEGF)monoclonal antibody,inhibits angiogenesis and reduces tumor growth.Serum VEGF-C,lactate dehydrogenase,and inflammatory markers have been reported as predictive markers related to bevacizumab treatment.Programmed cell death ligand 1(PD-L1)could act upon VEGF receptor 2 to induce cancer cell angiogenesis and metastasis.AIM To investigate the efficacy of bevacizumab-containing chemotherapy in patients with metastatic colorectal cancer(CRC)according to the expression of PD-L1.METHODS This analysis included CRC patients who received bevacizumab plus FOLFOX or FOLFIRI as first-line therapy between June 24,2014 and February 28,2022,at Samsung Medical Center(Seoul,South Korea).Analysis of patient data included evaluation of PD-L1 expression by the combined positive score(CPS).We analyzed the efficacy of bevacizumab according to PD-L1 expression status in patients with CRC.RESULTS A total of 124 patients was included in this analysis.Almost all patients were treated with bevacizumab plus FOLFIRI or FOLFOX as the first-line chemotherapy.While 77%of patients received FOLFOX,23%received FOLFIRI as backbone first-line chemotherapy.The numbers of patients with a PD-L1 CPS of 1 or more,5 or more,or 10 or more were 105(85%),64(52%),and 32(26%),respectively.The results showed no significant difference in progression-free survival(PFS)and overall survival(OS)with bevacizumab treatment between patients with PDL1 CPS less than 1 and those with PD-L1 CPS of 1 or more(PD-L1<1%vs PD-L1≥1%;PFS:P=0.93,OS:P=0.33),between patients with PD-L1 CPS less than 5 and of 5 or more(PD-L1<5%vs PD-L1≥5%;PFS:P=0.409,OS:P=0.746),and between patients with PD-L1 CPS less than 10 and of 10 or more(PD-L1<10%vs PD-L1≥10%;PFS:P=0.529,OS:P=0.568).CONCLUSION Chemotherapy containing bevacizumab can be considered as first-line therapy in metastatic CRC irrespective of PD-L1 expression.展开更多
AIM:To investigate the expression of programmed cell death 4(Pdcd4)tumor suppressor gene in tissue specimen of renal cell carcinoma(RCC),testicular germ cell cancer and penile cancer.METHODS:Pdcd4 expression was studi...AIM:To investigate the expression of programmed cell death 4(Pdcd4)tumor suppressor gene in tissue specimen of renal cell carcinoma(RCC),testicular germ cell cancer and penile cancer.METHODS:Pdcd4 expression was studied using immunohistochemistry in 188 cases of RCC and 28 controls(including 9 oncocytoma);in 74 cases of penile carcinoma(including 17 metastatic tissue samples)and26 controls;in 11 cases of seminoma,in 14 cases of non-seminoma and 5 controls.RESULTS:Control tissues exhibited strong core and cytoplasmatic Pdcd4 staining.In contrast,core and cy-toplasmatic Pdcd4 levels were significantly decreased in cancer tissues.CONCLUSION:Our data support a role for Pdcd4(down-)regulation in urologic tumors.Interestingly,Pdcd4 expression seem to be a potential diagnostic marker for renal or penile tumors.展开更多
Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem,including tumor cells and microenvironment.Breast cancer stem cells(BCSCs)cons...Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem,including tumor cells and microenvironment.Breast cancer stem cells(BCSCs)constitute a small population of cancer cells with unique characteristics,including their capacity for self-renewal and differentiation.Studies have shown that BCSCs not only drive tumorigenesis but also play a crucial role in promoting metastasis in breast cancer.The tumor microenvironment(TME),composed of stromal cells,immune cells,blood vessel cells,fibroblasts,and microbes in proximity to cancer cells,is increasingly recognized for its crosstalk with BCSCs and role in BCSC survival,growth,and dissemination,thereby influencing metastatic ability.Hence,a thorough understanding of BCSCs and the TME is critical for unraveling the mechanisms underlying breast cancer metastasis.In this review,we summarize current knowledge on the roles of BCSCs and the TME in breast cancer metastasis,as well as the underlying regulatory mechanisms.Furthermore,we provide an overview of relevant mouse models used to study breast cancer metastasis,as well as treatment strategies and clinical trials addressing BCSC-TME interactions during metastasis.Overall,this study provides valuable insights for the development of effective therapeutic strategies to reduce breast cancer metastasis.展开更多
Objectives:This study aimed to reveal the role and possible mechanism of the ubiquitin-conjugating enzyme 2T(UBE2T)in the biological activities of breast cancer stem cells(BCSCs).Methods:The specific protein and gene ...Objectives:This study aimed to reveal the role and possible mechanism of the ubiquitin-conjugating enzyme 2T(UBE2T)in the biological activities of breast cancer stem cells(BCSCs).Methods:The specific protein and gene expression were quantified by Western blotting and quantitative real-time polymerase chain reaction,the proportion of BCSCs was examined by flow cytometry,and the self-renewal and proliferation of BCSCs were verified by serial sphere formation and soft agar.Results:Increasing expression of UBE2T was drastically found in breast cancer than that in adjacent tissues.Furthermore,UBE2T overexpression significantly increased the proportion of BCSCs in breast cancer cells and promoted their self-renewal and proliferation.Silent UBE2T exhibited the opposite functions.UBE2T increased the levels of the mammalian target of rapamycin and the phosphorylated mammalian target of rapamycin.Mammalian target of rapamycin(mTOR)inhibitor rapamycin inhibited the function of UBE2T in BCSCs.Conclusion:UBE2T plays a role in BCSCs through mTOR pathway and may suggest a novel therapeutic strategy for breast cancer.展开更多
The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the tre...The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies.As a class of drugs widely used in clinical tumor immunotherapy,ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system.The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly.The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs.ICIs can regulate the phenotypic function of TAMs,and TAMs can also affect the tolerance of colorectal cancer to ICI therapy.TAMs play an important role in ICI resistance,and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.展开更多
Clear cell sarcoma(CCS)is a type of malignant tumor that can arise from tendons and aponeuroses.This malignant proliferation of cells with melanocytic lineage normally occurs in young patients,and it is normally ident...Clear cell sarcoma(CCS)is a type of malignant tumor that can arise from tendons and aponeuroses.This malignant proliferation of cells with melanocytic lineage normally occurs in young patients,and it is normally identified in extremities.However,different sites including gastrointestinal organs are also described.Due difficulties in the molecular and histopathology evaluation,the diagnosis is often confused with malignant melanoma.Most cases are treated with surgical resection,but overall,the prognosis is poor.In this editorial,we will discuss a very interesting case of CCS identified in the pancreas.We will discuss the literature and controversies in the management of this type of cancer.Furthermore,we will address molecular strategies to be incorporated in those cases to better understand the primary location of the tumor.Finally,future perspectives of the field and new strategies of treatment will be described.展开更多
Objective:To explore the effect and mechanism of prostaglandins D2(PGD2)on the stemness of gastric cancer stem cells(GCSCs).Methods:7901-GCSCs were enriched by serum-free culture method;then the positivity rate of CD4...Objective:To explore the effect and mechanism of prostaglandins D2(PGD2)on the stemness of gastric cancer stem cells(GCSCs).Methods:7901-GCSCs were enriched by serum-free culture method;then the positivity rate of CD44,a stemness marker,was detected by flow cytometry in serum-free cultured 7901-GCSCs;the sphere-forming ability was detected by the sphere-forming assay after stimulation with different concentrations of PGD2(2.5,5,10)μg/mL,and the expression of stemness-related indicators(OCT4,CD44)and autophagyrelated proteins(LC3,Beclin-1)after PGD2 stimulation was detected by the western blot assay in different concentrations.The expression of stemness-related indexes(OCT4,CD44)and autophagy-related proteins(LC3,Beclin-1)were detected by Western blot assay after stimulation with different concentrations of PGD2.The expression of autophagy-related proteins after stimulation with different concentrations of CQ(2.5,5,10)μM was detected by Western blot experiment.The protein expression of autophagy-related proteins(LC3,Beclin-1)and stemness-related indexes(OCT4,CD44)was detected by Western blot experiment after PGD2 as well as PGD2+CQ treatment.Results:Flow cytometry results showed that the expression of CD44 positivity was increased in serum-free cultured 7901-GCSCs compared with gastric cancer cells SGC-7901(P<0.05),which fulfilled the needs of subsequent experiments.The results of stem cell spheroid formation assay showed that the spheroid formation ability of 7901-GCSCs in the PGD2 group was significantly weakened compared with that of the DMSO group(P<0.05).Western blot results showed that the protein expression of stemness-related indexes(OCT4,CD44)was down-regulated in the 7901-GCSCs in the PGD2 group compared with that of the DMSO group(P<0.05),and the expression of autophagy-related proteins(LC3,Beclin-1)expression increased(P<0.05).Compared with the DMSO group,the expression of autophagy-related proteins(LC3,Beclin-1)was decreased in the CQ group(P<0.05).Western blot results also showed that the expression of cellular autophagy-related proteins and stemness-related indexes in the PGD2+CQ group was not significantly changed compared with that of the DMSO group(ns:the difference was not significant),suggesting that the CQ could block the effect of PGD2 on the expression of stemness markers in 7901-GCSCs.7901-GCSCs stemness inhibition.Conclusion:PGD2 may affect the stemness of 7901-GCSCs by regulating autophagy.展开更多
Objective:Non-small cell lung cancer(NSCLC)patients often experience significant fear of recurrence.To facilitate precise identification and appropriate management of this fear,this study aimed to compare the efficacy...Objective:Non-small cell lung cancer(NSCLC)patients often experience significant fear of recurrence.To facilitate precise identification and appropriate management of this fear,this study aimed to compare the efficacy and accuracy of a Backpropagation Neural Network(BPNN)against logistic regression in modeling fear of cancer recurrence prediction.Methods:Data from 596 NSCLC patients,collected between September 2023 and December 2023 at the Cancer Hospital of the Chinese Academy of Medical Sciences,were analyzed.Nine clinically and statistically significant variables,identified via univariate logistic regression,were inputted into both BPNN and logistic regression models developed on a training set(N=427)and validated on an independent set(N=169).Model performances were assessed using Area Under the Receiver Operating Characteristic(ROC)Curve and Decision Curve Analysis(DCA)in both sets.Results:The BPNN model,incorporating nine selected variables,demonstrated superior performance over logistic regression in the training set(AUC=0.842 vs.0.711,p<0.001)and validation set(0.7 vs.0.675,p<0.001).Conclusion:The BPNN model outperforms logistic regression in accurately predicting fear of cancer recurrence in NSCLC patients,offering an advanced approach for fear assessment.展开更多
BACKGROUND Limonin is one of the most abundant active ingredients of Tetradium ruticarpum.It exerts antitumor effects on several kinds of cancer cells.However,whether limonin exerts antitumor effects on colorectal can...BACKGROUND Limonin is one of the most abundant active ingredients of Tetradium ruticarpum.It exerts antitumor effects on several kinds of cancer cells.However,whether limonin exerts antitumor effects on colorectal cancer(CRC)cells and cancer stem-like cells(CSCs),a subpopulation responsible for a poor prognosis,is unclear.AIM To evaluate the effects of limonin on CSCs derived from CRC cells.METHODS CSCs were collected by culturing CRC cells in serum-free medium.The cytotoxicity of limonin against CSCs and parental cells(PCs)was determined by cholecystokinin octapeptide-8 assay.The effects of limonin on stemness were detected by measuring stemness hallmarks and sphere formation ability.RESULTS As expected,limonin exerted inhibitory effects on CRC cell behaviors,including cell proliferation,migration,invasion,colony formation and tumor formation in soft agar.A relatively low concentration of limonin decreased the expression stemness hallmarks,including Nanog andβ-catenin,the proportion of aldehyde dehydrogenase 1-positive CSCs,and the sphere formation rate,indicating that limonin inhibits stemness without presenting cytotoxicity.Additionally,limonin treatment inhibited invasion and tumor formation in soft agar and in nude mice.Moreover,limonin treatment significantly inhibited the phosphorylation of STAT3 at Y705 but not S727 and did not affect total STAT3 expression.Inhibition of Nanog andβ-catenin expression and sphere formation by limonin was obviously reversed by pretreatment with 2μmol/L colievlin.CONCLUSION Taken together,these results indicate that limonin is a promising compound that targets CSCs and could be used to combat CRC recurrence and metastasis.展开更多
Cancer stem cells(CSCs),or tumor-initiating cells(TICs),are cancerous cell subpopulations that remain while tumor cells propagate as a unique subset and exhibit multiple applications in several diseases.They are respo...Cancer stem cells(CSCs),or tumor-initiating cells(TICs),are cancerous cell subpopulations that remain while tumor cells propagate as a unique subset and exhibit multiple applications in several diseases.They are responsible for cancer cell initiation,development,metastasis,proliferation,and recurrence due to their self-renewal and differentiation abilities in many kinds of cells.Artificial intelligence(AI)has gained significant attention because of its vast applications in various fields including agriculture,healthcare,transportation,and robotics,particularly in detecting human diseases such as cancer.The division and metastasis of cancerous cells are not easy to identify at early stages due to their uncontrolled situations.It has provided some real-time pictures of cancer progression and relapse.The purpose of this review paper is to explore new investigations into the role of AI in cancer stem cell progression and metastasis and in regenerative medicines.It describes the association of machine learning and AI with CSCs along with its numerous applications from cancer diagnosis to therapy.This review has also provided key challenges and future directions of AI in cancer stem cell research diagnosis and therapeutic approach.展开更多
Cancer stem cells(CSCs),first identified in blood cancers,are increasingly recognized as significant biomarkers and targets in tumor therapy due to their metastatic potential and role in cancer recurrence.Recent resea...Cancer stem cells(CSCs),first identified in blood cancers,are increasingly recognized as significant biomarkers and targets in tumor therapy due to their metastatic potential and role in cancer recurrence.Recent research has demonstrated the dedication of scientists in targeting CSCs to explore novel therapeutic strategies.Many types of cancer exhibit metastasis,heterogeneity,and resistance to treatment,all of which are influenced by CSCs.These cells utilize various transcription factors and signaling pathways to carry out these functions.By identifying and understanding these pathways,new therapeutic breakthroughs can be achieved.Thus,targeting cancer stem cells holds great potential and importance in cancer treatment.Moreover,CSCs offer promising avenues for treating otherwise incurable diseases.However,targeting CSCs presents challenges such as immunological rejection and disease recurrence.Advancing research into CSCs may reveal new insights in the fight against cancer and ultimately improve human health.This review explores the roles of CSCs in cancer development and treatment,aiming to uncover new therapeutic approaches.展开更多
基金funded by grants from the National Natural Science Foundation of China(grant numbers:82002664,81872074,81772740,82173345 and 82373154)the Hanghai Jiading District Health Commission Scientific Research Project Youth Fund(grant num-ber:2020-QN-02)the Meng Chao Talent Training Plan-Youth Re-search Talent Training Program of Eastern Hepatobiliary Surgery Hos-pital and the Foundation for Distinguished Youths of Jiangsu Province(grant number:BK20200006).
文摘Background:Tumor-derived exosomes are involved in tumor progression and immune invasion and might func-tion as promising noninvasive approaches for clinical management.However,there are few reports on exosom-based markers for predicting the progression and adjuvant therapy response rate among patients with clear cell renal cell carcinoma(ccRCC).Methods:The signatures differentially expressed in exosomes from tumor and normal tissues from ccRCC pa-tients were correspondingly deregulated in ccRCC tissues.We adopted a two-step strategy,including Lasso and bootstrapping,to construct a novel risk stratification system termed the TDERS(Tumor-Derived Exosome-Related Risk Score).During the testing and validation phases,we leveraged multiple external datasets containing over 2000 RCC cases from eight cohorts and one inhouse cohort to evaluate the accuracy of the TDERS.In addition,enrichment analysis,immune infiltration signatures,mutation landscape and therapy sensitivity between the high and low TDERS groups were compared.Finally,the impact of TDERS on the tumor microenvironment(TME)was also analysed in our single-cell datasets.Results:TDERS consisted of 12 mRNAs deregulated in both exosomes and tissues from patients with ccRCC.TDERS achieved satisfactory performance in both prognosis and immune checkpoint inhibitor(ICI)response across all ccRCC cohorts and other pathological types,since the average area under the curve(AUC)to predict 5-year overall survival(OS)was larger than 0.8 across the four cohorts.Patients in the TDERS high group were resistant to ICIs,while mercaptopurine might function as a promising agent for those patients.Patients with a high TDERS were characterized by coagulation and hypoxia,which induced hampered tumor antigen presentation and relative resistance to ICIs.In addition,single cells from 12 advanced samples validated this phenomenon since the interaction between dendritic cells and macrophages was limited.Finally,PLOD2,which is highly expressed in fibro-and epi-tissue,could be a potential therapeutic target for ccRCC patients since inhibiting PLOD2 altered the malignant phenotype of ccRCC in vitro.Conclusion:As a novel,non-invasive,and repeatable monitoring tool,the TDERS could work as a robust risk stratification system for patients with ccRCC and precisely inform treatment decisions about ICI therapy.
基金supported by the Langfang Science and Technology Plan Project(No.2018013151)from Hebei Petro China Central Hospital.
文摘Background:Recently,researchers have been attracted in identifying the crucial genes related to cancer,which plays important role in cancer diagnosis and treatment.However,in performing the cancer molecular subtype classification task from cancer gene expression data,it is challenging to obtain those significant genes due to the high dimensionality and high noise of data.Moreover,the existing methods always suffer from some issues such as premature convergence.Methods:To address those problems,we propose a new ant colony optimization(ACO)algorithm called DACO to classify the cancer gene expression datasets,identifying the essential genes of different diseases.In DACO,first,we propose the initial pheromone concentration based on the weight ranking vector to accelerate the convergence speed;then,a dynamic pheromone volatility factor is designed to prevent the algorithm from getting stuck in the local optimal solution;finally,the pheromone update rule in the Ant Colony System is employed to update the pheromone globally and locally.To demonstrate the performance of the proposed algorithm in classification,different existing approaches are compared with the proposed algorithm on eight high-dimensional cancer gene expression datasets.Results:The experiment results show that the proposed algorithm performs better than other effective methods in terms of classification accuracy and the number of feature sets.It can be used to address the classification problem effectively.Moreover,a renal cell carcinoma dataset is employed to reveal the biological significance of the proposed algorithm from a number of biological analyses.Conclusion:The results demonstrate that CAPS may play a crucial role in the occurrence and development of renal clear cell carcinoma.
基金supported by grants from the Natural Science Founda-tion of Shanghai(graft number:20ZR1413100)Beijing Xisike Clinical Oncology Research Foundation(graft number:Y-HR2020MS-0948)+1 种基金the Shanghai Anti-Cancer Association Eyas Project(graft numbers:SACA-CY21A06,SACA-CY21B01)Shanghai Municipal Health Bureau(graft number:2020CXJQ03).
文摘With the advancement of anticancer therapy,there is increasing interest in understanding the tumor microenvi-ronment(TME).Cancer-associated fibroblasts(CAFs)play a pivotal role in the TME and have been the focus of much research in recent years.CAFs play an active role in cancer progression through complex interactions with other cells in the TME,releasing regulatory factors,synthesizing and remodeling the extracellular matrix.How-ever,research on the role of CAFs in renal cell carcinoma(RCC)is still in its nascent stages.Here,we describe the origins and subgroups of CAFs,the roles of CAFs in the development and progression of RCC,the impact of CAFs on RCC prognosis,and the potential of CAFs as treatment targets in RCC.By analyzing CAF subsets,biomarkers,and targeted therapies,we present the significance and contribution of CAFs in RCC research.Furthermore,we highlight the distinct contribution of CAFs in advanced RCC through horizontal comparison with other cancers.This paper provides a comprehensive perspective of recent and foundational studies on the role of CAFs in RCC and other types of cancers and new insights for further study of CAFs in RCC.
文摘Cancer cell dormancy(CCD)in colorectal cancer(CRC)poses a significant challenge to effective treatment.In CRC,CCD contributes to tumour recurrence,drug resistance,and amplifying the disease's burden.The molecular mechanisms governing CCD and strategies for eliminating dormant cancer cells remain largely unexplored.Therefore,understanding the molecular mechanisms governing dormancy is crucial for improving patient outcomes and developing targeted therapies.This editorial highlights the complex interplay of signalling pathways and factors involved in colorectal CCD,emphasizing the roles of Hippo/YAP,pluripotent transcription factors such as NANOG,HIF-1αsignalling,and Notch signalling pathways.Additionally,ERK/p38α/β/MAPK pathways,AKT signalling pathway,and Extracellular Matrix Metalloproteinase Inducer,along with some potential less explored pathways such as STAT/p53 switch and canonical and non-canonical Wnt and SMAD signalling,are also involved in promoting colorectal CCD.Highlighting their clinical significance,these findings may offer the potential for identifying key dormancy regulator pathways,improving treatment strategies,surmounting drug resistance,and advancing personalized medicine approaches.Moreover,insights into dormancy mechanisms could lead to the development of predictive biomarkers for identifying patients at risk of recurrence and the tailoring of targeted therapies based on individual dormancy profiles.It is essential to conduct further research into these pathways and their modulation to fully comprehend CRC dormancy mechanisms and enhance patient outcomes.
文摘Renal cell cancer(RCC)remains one of the most lethal types of cancer in adults.Micro RNAs(mi RNAs)play key roles in the pathogenesis of RCC.The role of mi R-206 in RCC has not been fully understood.The purpose of this study was to examine the role of mi R-206 in the regulation of proliferation and metastasis of RCC and the possible mechanism.mi R-206 expression was detected by reverse transcription?quantitative polymerase chain reaction(RT-q PCR)in RCC cell lines(786-O and OS-RC-2 cells)and clinical samples.MTS[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium]method,colony formation and transwell assay were used to detect the tumor-suppressing ability of mi R-206 in RCC.Luciferase assay was performed to verify the precise target of mi R-206.The results showed that the expression of mi R-206 was significantly down-regulated in RCC tissues and cells.The expression level of cyclin G-associated kinase(GAK),a master regulator of tumor proliferation and metastasis,was up-regulated with the decrease in mi R-206 in RCC tissues as well as RCC cell lines.In addition,the mi R-206 inhibitor promoted the proliferation,migration and invasion of 786-O and OS-RC-2 cells.Bioinformatics combined with luciferase and Western blot assays revealed that mi R-206 inhibited the expression of GAK.Moreover,mi R-206 regulates RCC cell growth partly through targeting GAK.Our study indicated that mi R-206 functions as a tumor suppressor in regulating the proliferation,migration and invasion of RCC by directly targeting GAK,and it holds promises as a potential therapeutic target for RCC.
基金supported by Grants from the Nature Science Foundation of Fujian,China(Nos.2010J01372,2015J01571).
文摘Tet methylcytosine dioxygenase 2(TET2)acts as an antioncogene that is investigated in different cancers.But the effects of TET2 in renal cell cancer(RCC)is still known little.Here,quantitative real-time PCR(qRT-PCR),Western blot,and immunofluorescence were performed to exam gene and protein expression.Cell proliferation was measured using Cell Counting Kit-8(CCK-8).Transwell assay was performed to detect cell metastasis viability.Flow cytometry was performed to analyze the cell cycle and cell apoptosis.The effects of TET2 on RCC growth in vivo was analyzed using a mouse xenograft model.We found that TET2 and miR-200c were decreased in RCC tissues,and hypermethylation of miR-200c promoter was found.Overexpression of TET2 promoted miR-200c expression by reducing miR-200c promoter methylation.Additionally,overexpression of TET2 or miR-200c suppressed cell growth and metastasis.Also,knockdown of miR-200c could moderate TET2 mediated cell growth inhibition.Furthermore,we found miR-200c directly regulates Stearoyl-CoA desaturase(SCD)gene expression.Moreover,in vivo experiment results confirmed that TET2 inhibited tumor growth.In conclusion,TET2 acts as an antioncogene in RCC by regulating the miR-200c-SCD axis and providing a potential target for RCC diagnosis and treatment.
基金the Guangzhou Medical Key Discipline Construction Project(2017-2019)the Science and Technology Project of Shantou(Shanfuke(2019)106-4:190606165268433).
文摘In this study,we used a meta-analysis method to evaluate the relationship between hypoxia-inducible factor-1α(HIF1α)1772C/T gene polymorphism(rs 11549465)and renal cell carcinoma(RCC)/prostate cancer risk.We searched for relevant studies(before March 1,2019)on Cochrane Library,Embase,and PubMed.Studies meeting the inclusion criteria were recruited into this meta-analysis.The outcome of dichotomous data was showed in the way of odds ratios(OR),and 95%confidence intervals(CI)were also counted.In this investigation,there was no association between HIF1α1772C/T gene polymorphism and susceptibility to RCC in Caucasians,Asians as well as overall populations.In addition,HIF1α1772C/T gene polymorphism was not found to be relevant to the survival in RCC.Interestingly,the T allele was relevant to prostate cancer risk in all populations,but not in Caucasians and Asians.However,the TT genotype and the CC genotype were not related to prostate cancer susceptibility in Asian,Caucasian,and all populations.In conclusion,the T allele of the HIF1α1772C/T gene polymorphism was related to prostate cancer risk in the overall populations.
文摘We present an unusual case of renal cell cancer(RCC) which relapsed with duodenal metastasis and unveiled itself by gastrointestinal(GI) bleeding.An 80-year old Caucasian gentleman with history of renal cell cancer status post nephrectomy 11 mo previously,presented with syncope and melena.Computed tomography scan of the abdomen revealed heterogeneous soft tissue mass in the right nephrectomy bed invading the duodenum.Upper GI endoscopic biopsy confirmed the presence of recurrent renal cell cancer.However,due to extensive metastatic disease,the patient was placed on palliative chemotherapy as surgical options were ruled out.Our case report reiterates the fact that renal cell carcinoma can recur with gastrointestinal manifestations and,although a rarity,it should be considered in a patient with a history of malignancy who presents with these symptoms.
基金Xuzhou Science and Technology Bureau Project(KC16SH012).
文摘Recent studies suggested that LIM and SH3 protein 1(LASP-1)is a promising therapeutic target for renal cell cancer(RCC).This study aimed to explore the role of LASP-1 in RCC.For this purpose,LASP-1 expression in RCC tissues was analyzed by immunohistochemistry and Western blot analysis.Cell proliferation,migration,invasion,and gene expression were detected by CCK-8 assay,Transwell assay,and Western blot analysis.The results showed that LASP-1 was highly expressed in RCC,and its expression level,t was positively correlated with lymph node metastasis and tumor,nodes,and metastases(TNM)stage.The knockdown of LASP-1 expression significantly inhibited the proliferation of RCC cells,increased the apoptosis rate,and inhibited RCC cell invasion and migration by inhibiting epithelial–mesenchymal transition.We conclude that LASP-1 promotes RCC progression and metastasis and is a promising therapeutic target for RCC.
文摘BACKGROUND Bevacizumab,an anti-vascular endothelial growth factor(VEGF)monoclonal antibody,inhibits angiogenesis and reduces tumor growth.Serum VEGF-C,lactate dehydrogenase,and inflammatory markers have been reported as predictive markers related to bevacizumab treatment.Programmed cell death ligand 1(PD-L1)could act upon VEGF receptor 2 to induce cancer cell angiogenesis and metastasis.AIM To investigate the efficacy of bevacizumab-containing chemotherapy in patients with metastatic colorectal cancer(CRC)according to the expression of PD-L1.METHODS This analysis included CRC patients who received bevacizumab plus FOLFOX or FOLFIRI as first-line therapy between June 24,2014 and February 28,2022,at Samsung Medical Center(Seoul,South Korea).Analysis of patient data included evaluation of PD-L1 expression by the combined positive score(CPS).We analyzed the efficacy of bevacizumab according to PD-L1 expression status in patients with CRC.RESULTS A total of 124 patients was included in this analysis.Almost all patients were treated with bevacizumab plus FOLFIRI or FOLFOX as the first-line chemotherapy.While 77%of patients received FOLFOX,23%received FOLFIRI as backbone first-line chemotherapy.The numbers of patients with a PD-L1 CPS of 1 or more,5 or more,or 10 or more were 105(85%),64(52%),and 32(26%),respectively.The results showed no significant difference in progression-free survival(PFS)and overall survival(OS)with bevacizumab treatment between patients with PDL1 CPS less than 1 and those with PD-L1 CPS of 1 or more(PD-L1<1%vs PD-L1≥1%;PFS:P=0.93,OS:P=0.33),between patients with PD-L1 CPS less than 5 and of 5 or more(PD-L1<5%vs PD-L1≥5%;PFS:P=0.409,OS:P=0.746),and between patients with PD-L1 CPS less than 10 and of 10 or more(PD-L1<10%vs PD-L1≥10%;PFS:P=0.529,OS:P=0.568).CONCLUSION Chemotherapy containing bevacizumab can be considered as first-line therapy in metastatic CRC irrespective of PD-L1 expression.
文摘AIM:To investigate the expression of programmed cell death 4(Pdcd4)tumor suppressor gene in tissue specimen of renal cell carcinoma(RCC),testicular germ cell cancer and penile cancer.METHODS:Pdcd4 expression was studied using immunohistochemistry in 188 cases of RCC and 28 controls(including 9 oncocytoma);in 74 cases of penile carcinoma(including 17 metastatic tissue samples)and26 controls;in 11 cases of seminoma,in 14 cases of non-seminoma and 5 controls.RESULTS:Control tissues exhibited strong core and cytoplasmatic Pdcd4 staining.In contrast,core and cy-toplasmatic Pdcd4 levels were significantly decreased in cancer tissues.CONCLUSION:Our data support a role for Pdcd4(down-)regulation in urologic tumors.Interestingly,Pdcd4 expression seem to be a potential diagnostic marker for renal or penile tumors.
基金supported by the National Key Research and Development Program of China(2023YFC2506400,2020YFA0112300)National Natural Science Foundation of China(82230103,81930075,82073267,82203399,82372689)+1 种基金Program for Outstanding Leading Talents in ShanghaiInnovative Research Team of High-level Local University in Shanghai。
文摘Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem,including tumor cells and microenvironment.Breast cancer stem cells(BCSCs)constitute a small population of cancer cells with unique characteristics,including their capacity for self-renewal and differentiation.Studies have shown that BCSCs not only drive tumorigenesis but also play a crucial role in promoting metastasis in breast cancer.The tumor microenvironment(TME),composed of stromal cells,immune cells,blood vessel cells,fibroblasts,and microbes in proximity to cancer cells,is increasingly recognized for its crosstalk with BCSCs and role in BCSC survival,growth,and dissemination,thereby influencing metastatic ability.Hence,a thorough understanding of BCSCs and the TME is critical for unraveling the mechanisms underlying breast cancer metastasis.In this review,we summarize current knowledge on the roles of BCSCs and the TME in breast cancer metastasis,as well as the underlying regulatory mechanisms.Furthermore,we provide an overview of relevant mouse models used to study breast cancer metastasis,as well as treatment strategies and clinical trials addressing BCSC-TME interactions during metastasis.Overall,this study provides valuable insights for the development of effective therapeutic strategies to reduce breast cancer metastasis.
基金This research was partly supported by the Fundamental Research Funds of Shandong University(21510078614097)the Shandong Natural Science Foundation General Project(ZR2022MC093).
文摘Objectives:This study aimed to reveal the role and possible mechanism of the ubiquitin-conjugating enzyme 2T(UBE2T)in the biological activities of breast cancer stem cells(BCSCs).Methods:The specific protein and gene expression were quantified by Western blotting and quantitative real-time polymerase chain reaction,the proportion of BCSCs was examined by flow cytometry,and the self-renewal and proliferation of BCSCs were verified by serial sphere formation and soft agar.Results:Increasing expression of UBE2T was drastically found in breast cancer than that in adjacent tissues.Furthermore,UBE2T overexpression significantly increased the proportion of BCSCs in breast cancer cells and promoted their self-renewal and proliferation.Silent UBE2T exhibited the opposite functions.UBE2T increased the levels of the mammalian target of rapamycin and the phosphorylated mammalian target of rapamycin.Mammalian target of rapamycin(mTOR)inhibitor rapamycin inhibited the function of UBE2T in BCSCs.Conclusion:UBE2T plays a role in BCSCs through mTOR pathway and may suggest a novel therapeutic strategy for breast cancer.
文摘The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies.As a class of drugs widely used in clinical tumor immunotherapy,ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system.The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly.The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs.ICIs can regulate the phenotypic function of TAMs,and TAMs can also affect the tolerance of colorectal cancer to ICI therapy.TAMs play an important role in ICI resistance,and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
文摘Clear cell sarcoma(CCS)is a type of malignant tumor that can arise from tendons and aponeuroses.This malignant proliferation of cells with melanocytic lineage normally occurs in young patients,and it is normally identified in extremities.However,different sites including gastrointestinal organs are also described.Due difficulties in the molecular and histopathology evaluation,the diagnosis is often confused with malignant melanoma.Most cases are treated with surgical resection,but overall,the prognosis is poor.In this editorial,we will discuss a very interesting case of CCS identified in the pancreas.We will discuss the literature and controversies in the management of this type of cancer.Furthermore,we will address molecular strategies to be incorporated in those cases to better understand the primary location of the tumor.Finally,future perspectives of the field and new strategies of treatment will be described.
基金Natural Science Foundation of Anhui Province(No.1908085MH258)Scientific Research and Innovation Project of Bengbu Medical College(No.Byycxz21004)。
文摘Objective:To explore the effect and mechanism of prostaglandins D2(PGD2)on the stemness of gastric cancer stem cells(GCSCs).Methods:7901-GCSCs were enriched by serum-free culture method;then the positivity rate of CD44,a stemness marker,was detected by flow cytometry in serum-free cultured 7901-GCSCs;the sphere-forming ability was detected by the sphere-forming assay after stimulation with different concentrations of PGD2(2.5,5,10)μg/mL,and the expression of stemness-related indicators(OCT4,CD44)and autophagyrelated proteins(LC3,Beclin-1)after PGD2 stimulation was detected by the western blot assay in different concentrations.The expression of stemness-related indexes(OCT4,CD44)and autophagy-related proteins(LC3,Beclin-1)were detected by Western blot assay after stimulation with different concentrations of PGD2.The expression of autophagy-related proteins after stimulation with different concentrations of CQ(2.5,5,10)μM was detected by Western blot experiment.The protein expression of autophagy-related proteins(LC3,Beclin-1)and stemness-related indexes(OCT4,CD44)was detected by Western blot experiment after PGD2 as well as PGD2+CQ treatment.Results:Flow cytometry results showed that the expression of CD44 positivity was increased in serum-free cultured 7901-GCSCs compared with gastric cancer cells SGC-7901(P<0.05),which fulfilled the needs of subsequent experiments.The results of stem cell spheroid formation assay showed that the spheroid formation ability of 7901-GCSCs in the PGD2 group was significantly weakened compared with that of the DMSO group(P<0.05).Western blot results showed that the protein expression of stemness-related indexes(OCT4,CD44)was down-regulated in the 7901-GCSCs in the PGD2 group compared with that of the DMSO group(P<0.05),and the expression of autophagy-related proteins(LC3,Beclin-1)expression increased(P<0.05).Compared with the DMSO group,the expression of autophagy-related proteins(LC3,Beclin-1)was decreased in the CQ group(P<0.05).Western blot results also showed that the expression of cellular autophagy-related proteins and stemness-related indexes in the PGD2+CQ group was not significantly changed compared with that of the DMSO group(ns:the difference was not significant),suggesting that the CQ could block the effect of PGD2 on the expression of stemness markers in 7901-GCSCs.7901-GCSCs stemness inhibition.Conclusion:PGD2 may affect the stemness of 7901-GCSCs by regulating autophagy.
基金Supported by Beijing Hope Run Special Fund of Cancer Foundation of China(LC2022C05).
文摘Objective:Non-small cell lung cancer(NSCLC)patients often experience significant fear of recurrence.To facilitate precise identification and appropriate management of this fear,this study aimed to compare the efficacy and accuracy of a Backpropagation Neural Network(BPNN)against logistic regression in modeling fear of cancer recurrence prediction.Methods:Data from 596 NSCLC patients,collected between September 2023 and December 2023 at the Cancer Hospital of the Chinese Academy of Medical Sciences,were analyzed.Nine clinically and statistically significant variables,identified via univariate logistic regression,were inputted into both BPNN and logistic regression models developed on a training set(N=427)and validated on an independent set(N=169).Model performances were assessed using Area Under the Receiver Operating Characteristic(ROC)Curve and Decision Curve Analysis(DCA)in both sets.Results:The BPNN model,incorporating nine selected variables,demonstrated superior performance over logistic regression in the training set(AUC=0.842 vs.0.711,p<0.001)and validation set(0.7 vs.0.675,p<0.001).Conclusion:The BPNN model outperforms logistic regression in accurately predicting fear of cancer recurrence in NSCLC patients,offering an advanced approach for fear assessment.
文摘BACKGROUND Limonin is one of the most abundant active ingredients of Tetradium ruticarpum.It exerts antitumor effects on several kinds of cancer cells.However,whether limonin exerts antitumor effects on colorectal cancer(CRC)cells and cancer stem-like cells(CSCs),a subpopulation responsible for a poor prognosis,is unclear.AIM To evaluate the effects of limonin on CSCs derived from CRC cells.METHODS CSCs were collected by culturing CRC cells in serum-free medium.The cytotoxicity of limonin against CSCs and parental cells(PCs)was determined by cholecystokinin octapeptide-8 assay.The effects of limonin on stemness were detected by measuring stemness hallmarks and sphere formation ability.RESULTS As expected,limonin exerted inhibitory effects on CRC cell behaviors,including cell proliferation,migration,invasion,colony formation and tumor formation in soft agar.A relatively low concentration of limonin decreased the expression stemness hallmarks,including Nanog andβ-catenin,the proportion of aldehyde dehydrogenase 1-positive CSCs,and the sphere formation rate,indicating that limonin inhibits stemness without presenting cytotoxicity.Additionally,limonin treatment inhibited invasion and tumor formation in soft agar and in nude mice.Moreover,limonin treatment significantly inhibited the phosphorylation of STAT3 at Y705 but not S727 and did not affect total STAT3 expression.Inhibition of Nanog andβ-catenin expression and sphere formation by limonin was obviously reversed by pretreatment with 2μmol/L colievlin.CONCLUSION Taken together,these results indicate that limonin is a promising compound that targets CSCs and could be used to combat CRC recurrence and metastasis.
文摘Cancer stem cells(CSCs),or tumor-initiating cells(TICs),are cancerous cell subpopulations that remain while tumor cells propagate as a unique subset and exhibit multiple applications in several diseases.They are responsible for cancer cell initiation,development,metastasis,proliferation,and recurrence due to their self-renewal and differentiation abilities in many kinds of cells.Artificial intelligence(AI)has gained significant attention because of its vast applications in various fields including agriculture,healthcare,transportation,and robotics,particularly in detecting human diseases such as cancer.The division and metastasis of cancerous cells are not easy to identify at early stages due to their uncontrolled situations.It has provided some real-time pictures of cancer progression and relapse.The purpose of this review paper is to explore new investigations into the role of AI in cancer stem cell progression and metastasis and in regenerative medicines.It describes the association of machine learning and AI with CSCs along with its numerous applications from cancer diagnosis to therapy.This review has also provided key challenges and future directions of AI in cancer stem cell research diagnosis and therapeutic approach.
文摘Cancer stem cells(CSCs),first identified in blood cancers,are increasingly recognized as significant biomarkers and targets in tumor therapy due to their metastatic potential and role in cancer recurrence.Recent research has demonstrated the dedication of scientists in targeting CSCs to explore novel therapeutic strategies.Many types of cancer exhibit metastasis,heterogeneity,and resistance to treatment,all of which are influenced by CSCs.These cells utilize various transcription factors and signaling pathways to carry out these functions.By identifying and understanding these pathways,new therapeutic breakthroughs can be achieved.Thus,targeting cancer stem cells holds great potential and importance in cancer treatment.Moreover,CSCs offer promising avenues for treating otherwise incurable diseases.However,targeting CSCs presents challenges such as immunological rejection and disease recurrence.Advancing research into CSCs may reveal new insights in the fight against cancer and ultimately improve human health.This review explores the roles of CSCs in cancer development and treatment,aiming to uncover new therapeutic approaches.