Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton ...Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.展开更多
Avian metapneumovirus(aMPV) is a highly contagious pathogen that causes acute upper respiratory tract diseases in chickens and turkeys, resulting in serious economic losses. Subtype B aMPV has recently become the domi...Avian metapneumovirus(aMPV) is a highly contagious pathogen that causes acute upper respiratory tract diseases in chickens and turkeys, resulting in serious economic losses. Subtype B aMPV has recently become the dominant epidemic strain in China. We developed an attenuated aMPV subtype B strain by serial passaging in Vero cells and evaluated its safety and efficacy as a vaccine candidate. The safety test showed that after the 30th passage, the LN16-A strain was fully attenuated, as clinical signs of infection and histological lesions were absent after inoculation.The LN16-A strain did not revert to a virulent strain after five serial passages in chickens. The genomic sequence of LN16-A differed from that of the parent wild-type LN16(wtLN16) strain and had nine amino acid mutations. In chickens, a single immunization with LN16-A induced robust humoral and cellular immune responses, including the abundant production of neutralizing antibodies, CD4^(+) T lymphocytes, and the Th1(IFN-γ) and Th2(IL-4 and IL-6)cytokines. We also confirmed that LN16-A provided 100% protection against subtype B aMPV and significantly reduced viral shedding and turbinate inflammation. Our findings suggest that the LN16-A strain is a promising live attenuated vaccine candidate that can prevent infection with subtype B aMPV.展开更多
Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,...Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,we established a sand-culture method to screen pingyangmycin mutagenized peanut lines based on their specific response to ethylene(“triple response”).An ethylene-insensitive mutant,inhibition of peanut hypocotyl elongation 1(iph1),was identified that showed reduced sensitivity to ethylene in both hypocotyl elongation and root growth.Through bulked segregant analysis sequencing,a major gene related to iph1,named AhIPH1,was preliminarily mapped at the chromosome Arahy.01,and further narrowed to a 450-kb genomic region through substitution mapping strategy.A total of 7014 genes were differentially expressed among the ACC treatment through RNA-seq analysis,of which only the Arahy.5BLU0Q gene in the candidate mapping interval was differentially expressed between WT and mutant iph1.Integrating sequence variations,functional annotation and transcriptome analysis revealed that a predicated gene,Arahy.5BLU0Q,encoding SNF1 protein kinase,may be the candidate gene for AhIPH1.This gene contained two single-nucleotide polymorphisms at promoter region and was more highly expressed in iph1 than WT.Our findings reveal a novel ethylene-responsive gene,which provides a theoretical foundation and new genetic resources for the mechanism of ethylene signaling in peanuts.展开更多
The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits...The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits during grainfilling remains poorly understood.In this study,the concentrations of protein,oil,and starch were studied in 204 recombinant inbred lines resulting from a cross between DH1M and T877 at four different stages post-pollination.All the traits exhibited considerable phenotypic variation.During the grain-filling stage,the levels of protein and starch content generally increased,whereas oil content decreased,with significant changes observed between 30 and 40 days after pollination.Quantitative trait locus(QTL)mapping was conducted and a total of 32 QTLs,comprising 14,12,and 6 QTLs for grain protein,oil,and starch content were detected,respectively.Few QTLs were consistently detectable across different time points.By integrating QTL analysis,glo-bal gene expression profiling,and comparative genomics,we identified 157,86,and 54 differentially expressed genes harboring nonsynonymous substitutions between the parental lines for grain protein,oil,and starch con-tent,respectively.Subsequent gene function annotation prioritized 15 candidate genes potentially involved in reg-ulating grain quality traits,including those encoding transcription factors(NAC,MADS-box,bZIP,and MYB),cell wall invertase,cellulose-synthase-like protein,cell division cycle protein,trehalase,auxin-responsive factor,and phloem protein 2-A13.Our study offers significant insights into the genetic architecture of maize kernel nutritional quality and identifies promising QTLs and candidate genes,which are crucial for the genetic enhance-ment of these traits in maize breeding programs.展开更多
Previous study indicated that the thermo-sensitive genic malesterile(TGMS) gene in rice was regulated by temperature.TGMS rice plays an important role in hybrid rice production,because the application of the TGMS syst...Previous study indicated that the thermo-sensitive genic malesterile(TGMS) gene in rice was regulated by temperature.TGMS rice plays an important role in hybrid rice production,because the application of the TGMS system in two-line breeding is laborsaving,timesaving,simple,inexpensive,efficient,and eliminating the limitations of the cytoplasmic male sterility(CMS) system.'AnnongS' is the first discovered and deeply studied TGMS rice lines in China.'AnnongS-1' and 'Y58S',two derivatives of TGMS line AnnongS,were both controlled by a single recessive gene named tms5,which was genetically mapped on chromosome 2.In this study,three populations('AnnongS-1' × 'Nanjing11','Y58S' × 'Q611',and 'Y58S' × 'Guanghui122') were developed and used for the molecular fine mapping of the tms5 gene.By analyzing recombination events in the sterile individuals using a total of 125 probes covering the tms5 region,the tms5 gene was physically mapped to a 19-kb DNA fragment between two markers 4039-1 and 4039-2,which were located on the BAC clone AP004039.After the construction of the physical map between two markers 4039-1 and 4039-2,a member(ONAC023) of the NAC(NAM-ATAF-CUC-related) gene family was identified as the candidate gene of the tms5 gene.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a common malignant gastrointestinal tumor.There are currently few clinical diagnostic and prognostic markers for HCC.LncRNA cancer susceptibility candidate 9(CASC9)is a long-...BACKGROUND Hepatocellular carcinoma(HCC)is a common malignant gastrointestinal tumor.There are currently few clinical diagnostic and prognostic markers for HCC.LncRNA cancer susceptibility candidate 9(CASC9)is a long-chain non-coding RNA discovered in recent years,and previous studies have found that lncRNA CASC9 participates in the occurrence and development of HCC,but its clinical value remains unclear.AIM To determine the expression of lncRNA CASC9 in HCC and its diagnostic and prognostic value.METHODS Data on CASC9 expression in patients with HCC were collected from the Cancer Genome Atlas(TCGA)database to analyze the relationship between CASC9 and patient survival.A total of 80 HCC patients treated in The First Affiliated Hospital of Guangxi Medical University from May 2012 to January 2014 were enrolled in the patient group,and 50 healthy subjects were enrolled in the control group during the same period.CASC9 expression in the two groups was determined using quantitative real-time polymerase chain reaction,and its diagnostic and prognostic value was analyzed based on the CASC9 data and pathological data in these HCC patients.The relationship between CASC9 and patient survival was assessed during the 5-year follow-up period.RESULTS Analysis of data from TCGA database revealed that control samples showed significantly lower CASC9 expression than carcinoma tissue samples(P<0.001);the low CASC9 expression group had a higher survival rate than the high CASC9 expression group(P=0.011),and the patient group showed significantly increased expression of serum CASC9,with the area under the curve(AUC)of 0.933.CASC9 expression was related to tumor size,combined hepatitis,tumor,node,metastasis(TNM)staging,lymph node metastasis,differentiation and alpha fetoprotein,and the high CASC9 expression group showed lower 1-year,3-year and 5-year survival rates than the low CASC9 expression group(all aP<0.05).Multivariate Cox regression analysis revealed that TNM staging,lymph node metastasis,differentiation,alpha fetoprotein and CASC9 were independent factors affecting the prognosis of patients.Stage I+II patients with lymph node metastasis,low differentiation,and alpha fetoprotein>200 ng/mL had a poor 5-year survival rate.CONCLUSION High CASC9 expression is beneficial in the prognosis of HCC patients.CASC9 is expected to be a potential diagnostic and prognostic indicator of HCC.展开更多
Genetic improvement for drought stress tolerance in rice involves the quantitative nature of the trait, which reflects the additive effects of several genetic loci throughout the genome. Yield components and related t...Genetic improvement for drought stress tolerance in rice involves the quantitative nature of the trait, which reflects the additive effects of several genetic loci throughout the genome. Yield components and related traits under stressed and well-water conditions were assayed in mapping populations derived from crosses of Azucena×IR64 and Azucena×Bala. To find the candidate rice genes underlying Quantitative Trait Loci (QTL) in these populations, we conducted in silico analysis of a candidate region flanked by the genetic markers RM212 and RM319 on chromosome 1, proximal to the semi-dwarf (sd1) locus. A total of 175 annotated genes were identified from this region. These included 48 genes annotated by functional homology to known genes, 23 pseudogenes, 24 ab initio predicted genes supported by an alignment match to an EST (Expressed sequence tag) of unknown function, and 80 hypothetical genes predicted solely by ab initio means. Among these, 16 candidate genes could potentially be involved in drought stress response.展开更多
Early seedling vigor(ESV)is a major breeding target in rice,especially under direct seeding.To identify quantitative trait locus(QTL)affecting ESV,a recombinant inbred line population derived from a cross between 0242...Early seedling vigor(ESV)is a major breeding target in rice,especially under direct seeding.To identify quantitative trait locus(QTL)affecting ESV,a recombinant inbred line population derived from a cross between 02428 and YZX,two cultivars differing in vigor during early seedling growth,was used for QTL analysis.Nine traits associated with ESV were examined using a high-density map.Of 16 additive loci identified,three were detected in two generations and thus considered stable.Four epistatic interactions were detected,one of which was repeated in two generations.Further analysis of the pyramiding effect of the three stable QTL showed that the phenotypic value could be effectively improved with an increasing number of QTL.These results were combined with results from our previous QTL analysis of the germination index.The lines G58 and G182 combined all the favourable alleles of all three stable QTL for ESV and three QTL for germination speed.These two lines showed rapid germination and strong ESV.A total of 37 candidate differentially expressed genes were obtained from the regions of the three stable QTL by analysis of the dynamic transcriptomic expression profile during the seedling growth period of the two parents.The QTL are targets for ESV breeding and the candidate genes await functional validation.This study provides a theoretical basis and a genetic resource for the breeding of directseeded rice.展开更多
Drought is one of the primary abiotic stress factors affecting the yield,growth,and development of soybeans.In extreme cases,drought can reduce yield by more than 50%.The seedling stage is an important determinant of ...Drought is one of the primary abiotic stress factors affecting the yield,growth,and development of soybeans.In extreme cases,drought can reduce yield by more than 50%.The seedling stage is an important determinant of soybean growth:the number and vigor of seedlings will affect growth and yield at harvest.Therefore,it is important to study the drought resistance of soybean seedlings.In this study,a recombinant inbred line(RIL)population comprising 234 F_(6:10)lines(derived from Zhonghuang35×Jindou 21)and a panel of 259 soybean accessions was subjected to drought conditions to identify the effects on phenotypic traits under these conditions.Using a genetic map constructed by single nucleotide polymorphism(SNPs)markers,18 quantitative trait loci(QTL)on 7 soybean chromosomes were identified in two environments.This included 9 QTL clusters identified in the RIL population.Fifty-three QTL were identified in 19 soybean chromosomes by genome-wide association analysis(GWAS)in the panel of accessions,including 69 significant SNPs(-log_(10)(P)≥3.97).A combination of the two populations revealed that two SNPs(-log_(10)(P)≥3.0)fell within two of the QTL(qPH7-4 and qPH7-6)confidence intervals.We not only re-located several previously reported drought-resistance genes in soybean and other crops but also identified several non-synonymous stress-related mutation site differences between the two parents,involving Glyma.07 g093000,Glyma.07 g093200,Glyma.07 g094100 and Glyma.07 g094200.One previously unreported new gene related to drought stress,Glyma.07 g094200,was found by regional association analysis.The significant SNP CHR7-17619(G/T)was within an exon of the Glyma.07 g094200 gene.In the RIL population,the DSP value of the"T"allele of CHR7-17619 was significantly(P<0.05)larger than the"G"allele in different environments.The results of our study lay the groundwork for cloning and molecular marker-assisted selection of droughtresistance genes in soybeans at the seedling stage.展开更多
The aim of the present study is to analyze the global research trend of radiation-responsive genes and identify the highly reproducible radiation-responsive genes. Bibliometric methods were applied to analyze the glob...The aim of the present study is to analyze the global research trend of radiation-responsive genes and identify the highly reproducible radiation-responsive genes. Bibliometric methods were applied to analyze the global research trend of radiation-responsive genes. We found 79 publications on radiation-responsive genes from 2000 to 2017. A total of 35 highly reproducible radiation-responsive genes were identified. Most genes are involved in response to DNA damage, cell proliferation, cell cycle regulation, and DNA repair.The p53 signal pathway was the top enriched pathway. The expression levels of 18 genes in human B lymphoblastoid cell line(AHH-1) cells were significantly up-regulated in a dose-dependent manner at 24 h after exposure to 0-5 Gy ^60 Coγ-ray irradiation. Our results indicate that developing a gene expression panel with the 35 high reproducibility radiation-responsive genes may be necessary for qualitative and quantitative assessment after exposure.展开更多
The cDNA library of an ovary from Small Tail Han sheep before estrus was constructed by switching mechanism at 5' end of RNA transcript (SMART) approach. This library had a plaque titer of 1 x 109 pfu mL-1 and a 96...The cDNA library of an ovary from Small Tail Han sheep before estrus was constructed by switching mechanism at 5' end of RNA transcript (SMART) approach. This library had a plaque titer of 1 x 109 pfu mL-1 and a 96% recombinant ratio of which the fragment length of inserted average cDNA sequences was 1.0 kb. Based on bioinformatics analysis of the sequences, we obtained 338 expressed sequence tags (ESTs) from 380 cDNA clones which indicated 191 contigs. These contigs consist of 89 unmatched ESTs, 9 homologous known genes in sheep, and 93 homologous sequences in species of mouse, bovine, and human beings, including 19 sequences expressed in the ovary or follicle and 14 unknown sequences. Several candidate genes associated with sheep reproduction trait such as epidermal growth factor (EGF), estrogen receptor (ESR), Inhibin, follicle stimulating hormone receptor (FSHR), prostaglandin (PG), and transforming growth factor-β (TGF-β) were identified and the homologous were cloned from this library, which will contribute to compile expression profiles and find the major genes of prolificacy of Small Tail Han sheep.展开更多
E1 Tor Vibrio cholerae (EVC) strains may be classifled into two kinds-epidemigenic (EEVC) strains and non-epidemigenic (NEEVC) strains-based on a phage-biotyping system. A large number of EEVC strains have been screen...E1 Tor Vibrio cholerae (EVC) strains may be classifled into two kinds-epidemigenic (EEVC) strains and non-epidemigenic (NEEVC) strains-based on a phage-biotyping system. A large number of EEVC strains have been screened for toxigenic and putative colonization attributes. One such naturally occurring strain (designated IEM 101) has been found which is devoid of genes encoding cholera toxin (CT), accessory cholera enterotoxin (ACE), zonula occludens toxin (ZOT), but possesses RS1 sequences and toxin-coregulated pilus A gene (tcpA) although tcpA is poorly expressed. It expresses type B pili but does not posses type C pili. It is an E1 Tor Ogawa strain and does not cause fluid accumulation in rabbit ileal loop tests. Active immunization of rabbits with strain IEM 101 elicited good protection against challenge with virulent strains of V cholerae O1. Oral administrationcaused no side effects in 15 human volunteers, colonized the gut for four to ten days and elicited good immune responses展开更多
Appropriate candidate frequency bands are extremely important for the development of future 5G systems. In this work, the researches on 5G spectrum around the world are summarized. Then the potential candidate frequen...Appropriate candidate frequency bands are extremely important for the development of future 5G systems. In this work, the researches on 5G spectrum around the world are summarized. Then the potential candidate frequency bands for 5G systems are investigated based on practical utilization of spectrum in China. For spectrum below 6GHz, the feasibility of possible frequency bands for 5G system are analyzed, which mainly come from 2G/3G/4G spectrum re-farming, the spectrum identified by footnotes for IMT systems in Regulations on the Radio Frequency Allocation of China, and potential candidate bands from WRC-15 Agenda Item 1.1. Moreover, propagation characteristics of WRC-15 candidate frequency bands proposed by China are measured and modeled to verify their effectiveness. For spectrum above 6GHz, the potential candidate frequency bands for 5G systems are selected based on the preliminary analysis of spectrum allocation, allotment and the current usage in China. Suggestions are provided for further studies on 5G spectrum.展开更多
There is a consensus in the aerospace field that the development of reusable liquid rockets can effectively reduce the launch expense.The pursuit of a long service life and reutilization highly depends on the bearing ...There is a consensus in the aerospace field that the development of reusable liquid rockets can effectively reduce the launch expense.The pursuit of a long service life and reutilization highly depends on the bearing components.However,the rolling element bearings(REBs)used in the existing rocket turbopumps present obvious and increasing limitations due to their mechanical contacting mode.For REBs,high rotational speed and long service life are two performance indexes that mutually restrict each other.To go beyond the DN value(the product of the bearing bore and rotational speed)limit of REBs,the major space powers have conducted substantial explorations on the use of new types of bearings to replace the REB.This review discusses,first,the crucial role of bearings in rocket turbopumps and the related structural improvements of REBs.Then,with the prospect of application to the next generation of reusable liquid rocket turbopumps,the bearing candidates investigated by major space powers are summarized comprehensively.These promising alternatives to REBs include fluid-film,foil,and magnetic bearings,together with the novel superconducting compound bearings recently proposed by our team.Our more than ten years of relevant research on fluid-film and magnetic bearings are also introduced.This review is meaningful for the development of long-life and highly reliable bearings to be used in future reusable rocket turbopumps.展开更多
Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathoge...Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathogen races. In this study, a new resistance gene against Pst race CYR34 was identified and predicted using the descendants of a cross between AS1676, a highly resistant Chinese landrace, and Avocet S, a susceptible cultivar. From a heterozygous plant from a F7recombinant inbred line(RIL) population lacking the Yr18 gene, a near-isogenic line(NIL) population was developed to map the resistance gene. An allstage resistance gene, YrAS1676, was identified on chromosome arm 1AL via bulked-segregant exomecapture sequencing. By analyzing a large NIL population consisting of 6537 plants, the gene was further mapped to the marker interval between KA1A_485.36 and KA1A_490.13, spanning 485.36–490.13 Mb on1AL. A total of 66 annotated genes have been reported in this region. To characterize and predict the candidate gene(s), an RNA-seq was performed using NIL-R and NIL-S seedlings 3 days after CYR34 inoculation. Compared to NIL-S plants, NIL-R plants showed stronger immune reaction and higher expression levels of genes encoding pathogenesis-associated proteins. These differences may help to explain why NIL-R plants were more resistant to Pst race CYR34 than NIL-S plants. By combining fine-mapping and transcriptome sequencing, a calcium-dependent protein kinase gene was finally predicted as the potential candidate gene of YrAS1676. This gene contained a single-nucleotide polymorphism. The candidate gene was more highly expressed in NIL-R than in NIL-S plants. In field experiments with Pst challenge,the YrAS1676 genotype showed mitigation of disease damage and yield loss without adverse effects on tested agronomic traits. These results suggest that YrAS1676 has potential use in wheat stripe rust resistance breeding.展开更多
The Middle-Upper Cambrian boundary is one of the current stratigraphical problems which remain openin the geological world, since there have been no universally acknowledged delimiting standard and stratotype.Acting o...The Middle-Upper Cambrian boundary is one of the current stratigraphical problems which remain openin the geological world, since there have been no universally acknowledged delimiting standard and stratotype.Acting on the instruction of Profs. Lu Yanhao and An Taixiang the author studied in details the Paibi Section,which is well exposed as a continuous sequence at an easily accessible locality. The Middle-Upper Cambrianboundary strata are composed of biocalcimicrosparite, indicating the sedimentary environment of anunderwater upheaval on the gentle slope along the frontal margin of the Yangtze carbonate platform. For the upper Middle and lower Upper Cambrian agnostid trilobite zones and conodont zones are erected,and a more accurate correlation between the trilobite and conodont sequences is established. Based on these,the Middle-Upper Cambrian boundary is drawn more reasonably and precisely than what was done before. Inshort, the section studied is superior to other known sections of Middle-Upper Cambrian. and it will probablybe an ideal candidate for the Middle-Upper Cambrian boundary stratotype.展开更多
Background:A run of homozygosity(ROH)is a consecutive tract of homozygous genotypes in an individual that indicates it has inherited the same ancestral haplotype from both parents.Genomic inbreeding can be quantified ...Background:A run of homozygosity(ROH)is a consecutive tract of homozygous genotypes in an individual that indicates it has inherited the same ancestral haplotype from both parents.Genomic inbreeding can be quantified based on ROH.Genomic regions enriched with ROH may be indicative of selection sweeps and are known as ROH islands.We carried out ROH analyses in five Chinese indigenous sheep breeds;Altay sheep(n=50 individuals),Large-tailed Han sheep(n=50),Hulun Buir sheep(n=150),Short-tailed grassland sheep(n=150),and Tibetan sheep(n=50),using genotypes from an Ovine Infinium HD SNP BeadChip.Results:A total of 18,288 ROH were identified.The average number of ROH per individual across the five sheep breeds ranged from 39(Hulun Buir sheep)to 78(Large-tailed Han sheep)and the average length of ROH ranged from 0.929 Mb(Hulun Buir sheep)to 2.544 Mb(Large-tailed Han sheep).The effective population size(Ne)of Altay sheep,Large-tailed Han sheep,Hulun Buir sheep,Short-tailed grassland sheep and Tibetan sheep were estimated to be 81,78,253,238 and 70 five generations ago.The highest ROH-based inbreeding estimate(FROH)was 0.0808 in Large-tailed Han sheep,whereas the lowest F_(ROH)was 0.0148 in Hulun Buir sheep.Furthermore,the highest proportion of long ROH fragments(>5 Mb)was observed in the Large-tailed Han sheep breed which indicated recent inbreeding.In total,49 ROH islands(the top 0.1% of the SNPs most commonly observed in ROH)were identified in the five sheep breeds.Three ROH islands were common to all the five sheep breeds,and were located on OAR2:12.2-12.3 Mb,OAR12:78.4-79.1 Mb and OAR13:53.0-53.6 Mb.Three breed-specific ROH islands were observed in Altay sheep(OAR15:3.4-3.8 Mb),Large-tailed Han sheep(ORA17:53.5-53.8 Mb)and Tibetan sheep(ORA5:19.8-20.2 Mb).Collectively,the ROH islands harbored 78 unique genes,including 19 genes that have been documented as having associations with tail types,adaptation,growth,body size,reproduction or immune response.Conclusion:Different ROH patterns were observed in five Chinese indigenous sheep breeds,which reflected their different population histories.Large-tailed Han sheep had the highest genomic inbreeding coefficients and the highest proportion of long ROH fragments indicating recent inbreeding.Candidate genes in ROH islands could be used to illustrate the genetic characteristics of these five sheep breeds.Our findings contribute to the understanding of genetic diversity and population demography,and help design and implement breeding and conservation strategies for Chinese sheep.展开更多
Heterodera avenae (cereal cyst nematode, CCN) infects many cereal crops and causes serious yield losses worldwide. Interaction studies investigating H. avenae and its hosts are still in their infancy. In this study,...Heterodera avenae (cereal cyst nematode, CCN) infects many cereal crops and causes serious yield losses worldwide. Interaction studies investigating H. avenae and its hosts are still in their infancy. In this study, a barley model plant, the Hordeum vulgare cultivar Golden Promise, was investigated for its potential as a candidate model host to study its inter- action with H. avenae. CCN-infective juveniles were attracted by the root tips and gathered around the root elongation zones of Golden Promise on 0.7% water agar plates. The juveniles invaded the roots and developed successfully until maturation at 40 days after inoculation in sterile sand soil. The cryotomy and syncytium measurements indicated that the syncytia enlarged gradually throughout the development of the nematodes and caused the corresponding root regions to swell obviously. Quantitative real-time PCR analysis showed that the down-regulation of defence-related barley genes and up-regulation Of development-related barley ger^es contribute to the understanding of compatible interaction between H. avenae and Golden Promise. Barley stripe mosaic virus (BSMV) virus-induced gene silencing (VIGS) can be used in the roots of Golden Promise. In conclusion, the Hordeum vulgare cultivar Golden Promise is a suitable candidate model host for interaction studies with Heterodera avenae. The studies presented above document the first CCN host that no.t only has published genome context but also be compatible to BSMV VIGS.展开更多
Fruit cracking is a phenomenon in which the peel cracks during grape berry development,which seriously affects the yield and quality of the fruit.However,there are few studies on the mining of candidate genes related ...Fruit cracking is a phenomenon in which the peel cracks during grape berry development,which seriously affects the yield and quality of the fruit.However,there are few studies on the mining of candidate genes related to berry cracking.In order to better understand the genetic basis of berry cracking,we used the results of previous quantitative trait locus(QTL)mapping,combined with field surveys of berry-cracking types and the berry-cracking rate,to mine candidate berry-cracking genes.The results showed that three identical QTL loci were detected in two years(2019 and 2020);and three candidate genes were annotated in the QTL interval.In mature berries,the expressions of the candidate genes were more abundant in the cracking-susceptible parent(‘Crimson Seedless’)than in the cracking-resistant parent(‘Muscat Hamburg’).Grape berry cracking is a complex trait controlled by multiple genes,mainly including genes encoding cellulose synthase–like protein H1,glucan endo-1,3-beta-glucosidase 12,and brassinosteroid insensitive 1-associated receptor kinase 1.The high expression of the candidate berry-cracking genes may promote the occurrence of berry cracking.This study helps elucidate the genetic mechanism of grape berry cracking.展开更多
基金supported by the Jiangsu Natural Science Foundation,China(BK20231468)the Fundamental Research Funds for the Central Universities,China(ZJ24195012)+3 种基金the National Natural Science Foundation in China(31871668)the Jiangsu Key R&D Program,China(BE2022384)the Xinjiang Uygur Autonomous Region Science and Technology Support Program,China(2021E02003)the Jiangsu Collaborative Innovation Center for Modern Crop Production Project,China(No.10)。
文摘Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.
基金supported by the National Key Research and Development Program of China (2022YFD1800604)the China Agricultural Research System (CARS-41)the Heilongjiang Touyan Innovation Team Program of China
文摘Avian metapneumovirus(aMPV) is a highly contagious pathogen that causes acute upper respiratory tract diseases in chickens and turkeys, resulting in serious economic losses. Subtype B aMPV has recently become the dominant epidemic strain in China. We developed an attenuated aMPV subtype B strain by serial passaging in Vero cells and evaluated its safety and efficacy as a vaccine candidate. The safety test showed that after the 30th passage, the LN16-A strain was fully attenuated, as clinical signs of infection and histological lesions were absent after inoculation.The LN16-A strain did not revert to a virulent strain after five serial passages in chickens. The genomic sequence of LN16-A differed from that of the parent wild-type LN16(wtLN16) strain and had nine amino acid mutations. In chickens, a single immunization with LN16-A induced robust humoral and cellular immune responses, including the abundant production of neutralizing antibodies, CD4^(+) T lymphocytes, and the Th1(IFN-γ) and Th2(IL-4 and IL-6)cytokines. We also confirmed that LN16-A provided 100% protection against subtype B aMPV and significantly reduced viral shedding and turbinate inflammation. Our findings suggest that the LN16-A strain is a promising live attenuated vaccine candidate that can prevent infection with subtype B aMPV.
基金supported by the National Natural Science Foundation of China(32001578)Qingdao Science&Technology Key Projects(22-1-3-1-zyyd-nsh,23-1-3-8-zyyd-nsh)+1 种基金Salt-Alkali Agriculture Industry System of Shandong Province(SDAIT-29-03)Science&Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta(2022SZX19)。
文摘Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,we established a sand-culture method to screen pingyangmycin mutagenized peanut lines based on their specific response to ethylene(“triple response”).An ethylene-insensitive mutant,inhibition of peanut hypocotyl elongation 1(iph1),was identified that showed reduced sensitivity to ethylene in both hypocotyl elongation and root growth.Through bulked segregant analysis sequencing,a major gene related to iph1,named AhIPH1,was preliminarily mapped at the chromosome Arahy.01,and further narrowed to a 450-kb genomic region through substitution mapping strategy.A total of 7014 genes were differentially expressed among the ACC treatment through RNA-seq analysis,of which only the Arahy.5BLU0Q gene in the candidate mapping interval was differentially expressed between WT and mutant iph1.Integrating sequence variations,functional annotation and transcriptome analysis revealed that a predicated gene,Arahy.5BLU0Q,encoding SNF1 protein kinase,may be the candidate gene for AhIPH1.This gene contained two single-nucleotide polymorphisms at promoter region and was more highly expressed in iph1 than WT.Our findings reveal a novel ethylene-responsive gene,which provides a theoretical foundation and new genetic resources for the mechanism of ethylene signaling in peanuts.
基金supported by the Key Research and Development Program of Jiangsu Province(BE2022343)the Seed Industry Revitalization Project of Jiangsu Province(JBGS[2021]009)+2 种基金the National Natural Science Foundation of China(32061143030 and 31972487)Jiangsu Province University Basic Science Research Project(21KJA210002)the Innovative Research Team of Universities in Jiangsu Province,the High-End Talent Project of Yangzhou University,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),and Qing Lan Project of Jiangsu Province.
文摘The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits during grainfilling remains poorly understood.In this study,the concentrations of protein,oil,and starch were studied in 204 recombinant inbred lines resulting from a cross between DH1M and T877 at four different stages post-pollination.All the traits exhibited considerable phenotypic variation.During the grain-filling stage,the levels of protein and starch content generally increased,whereas oil content decreased,with significant changes observed between 30 and 40 days after pollination.Quantitative trait locus(QTL)mapping was conducted and a total of 32 QTLs,comprising 14,12,and 6 QTLs for grain protein,oil,and starch content were detected,respectively.Few QTLs were consistently detectable across different time points.By integrating QTL analysis,glo-bal gene expression profiling,and comparative genomics,we identified 157,86,and 54 differentially expressed genes harboring nonsynonymous substitutions between the parental lines for grain protein,oil,and starch con-tent,respectively.Subsequent gene function annotation prioritized 15 candidate genes potentially involved in reg-ulating grain quality traits,including those encoding transcription factors(NAC,MADS-box,bZIP,and MYB),cell wall invertase,cellulose-synthase-like protein,cell division cycle protein,trehalase,auxin-responsive factor,and phloem protein 2-A13.Our study offers significant insights into the genetic architecture of maize kernel nutritional quality and identifies promising QTLs and candidate genes,which are crucial for the genetic enhance-ment of these traits in maize breeding programs.
文摘Previous study indicated that the thermo-sensitive genic malesterile(TGMS) gene in rice was regulated by temperature.TGMS rice plays an important role in hybrid rice production,because the application of the TGMS system in two-line breeding is laborsaving,timesaving,simple,inexpensive,efficient,and eliminating the limitations of the cytoplasmic male sterility(CMS) system.'AnnongS' is the first discovered and deeply studied TGMS rice lines in China.'AnnongS-1' and 'Y58S',two derivatives of TGMS line AnnongS,were both controlled by a single recessive gene named tms5,which was genetically mapped on chromosome 2.In this study,three populations('AnnongS-1' × 'Nanjing11','Y58S' × 'Q611',and 'Y58S' × 'Guanghui122') were developed and used for the molecular fine mapping of the tms5 gene.By analyzing recombination events in the sterile individuals using a total of 125 probes covering the tms5 region,the tms5 gene was physically mapped to a 19-kb DNA fragment between two markers 4039-1 and 4039-2,which were located on the BAC clone AP004039.After the construction of the physical map between two markers 4039-1 and 4039-2,a member(ONAC023) of the NAC(NAM-ATAF-CUC-related) gene family was identified as the candidate gene of the tms5 gene.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a common malignant gastrointestinal tumor.There are currently few clinical diagnostic and prognostic markers for HCC.LncRNA cancer susceptibility candidate 9(CASC9)is a long-chain non-coding RNA discovered in recent years,and previous studies have found that lncRNA CASC9 participates in the occurrence and development of HCC,but its clinical value remains unclear.AIM To determine the expression of lncRNA CASC9 in HCC and its diagnostic and prognostic value.METHODS Data on CASC9 expression in patients with HCC were collected from the Cancer Genome Atlas(TCGA)database to analyze the relationship between CASC9 and patient survival.A total of 80 HCC patients treated in The First Affiliated Hospital of Guangxi Medical University from May 2012 to January 2014 were enrolled in the patient group,and 50 healthy subjects were enrolled in the control group during the same period.CASC9 expression in the two groups was determined using quantitative real-time polymerase chain reaction,and its diagnostic and prognostic value was analyzed based on the CASC9 data and pathological data in these HCC patients.The relationship between CASC9 and patient survival was assessed during the 5-year follow-up period.RESULTS Analysis of data from TCGA database revealed that control samples showed significantly lower CASC9 expression than carcinoma tissue samples(P<0.001);the low CASC9 expression group had a higher survival rate than the high CASC9 expression group(P=0.011),and the patient group showed significantly increased expression of serum CASC9,with the area under the curve(AUC)of 0.933.CASC9 expression was related to tumor size,combined hepatitis,tumor,node,metastasis(TNM)staging,lymph node metastasis,differentiation and alpha fetoprotein,and the high CASC9 expression group showed lower 1-year,3-year and 5-year survival rates than the low CASC9 expression group(all aP<0.05).Multivariate Cox regression analysis revealed that TNM staging,lymph node metastasis,differentiation,alpha fetoprotein and CASC9 were independent factors affecting the prognosis of patients.Stage I+II patients with lymph node metastasis,low differentiation,and alpha fetoprotein>200 ng/mL had a poor 5-year survival rate.CONCLUSION High CASC9 expression is beneficial in the prognosis of HCC patients.CASC9 is expected to be a potential diagnostic and prognostic indicator of HCC.
基金Project supported partly by the Rockefeller Foundation thesis dis-sertation training grant and the National Hi-Tech Research and De-velopment Program (863) of China
文摘Genetic improvement for drought stress tolerance in rice involves the quantitative nature of the trait, which reflects the additive effects of several genetic loci throughout the genome. Yield components and related traits under stressed and well-water conditions were assayed in mapping populations derived from crosses of Azucena×IR64 and Azucena×Bala. To find the candidate rice genes underlying Quantitative Trait Loci (QTL) in these populations, we conducted in silico analysis of a candidate region flanked by the genetic markers RM212 and RM319 on chromosome 1, proximal to the semi-dwarf (sd1) locus. A total of 175 annotated genes were identified from this region. These included 48 genes annotated by functional homology to known genes, 23 pseudogenes, 24 ab initio predicted genes supported by an alignment match to an EST (Expressed sequence tag) of unknown function, and 80 hypothetical genes predicted solely by ab initio means. Among these, 16 candidate genes could potentially be involved in drought stress response.
基金This research was supported by the Breeding New Varieties of Rice Suitable for Light and Simple Cultivation and Mechanized Production Project(2017YFD0100104)the Research and Development Plan for Key Areas in Guangdong Province(2018B020206002)+1 种基金the China Agriculture Research System(CARS-01-17)Special thanks are due to the South China Agricultural University Doctoral Innovative Talents(Domestic Training)Cultivation Program(CX2019N044)。
文摘Early seedling vigor(ESV)is a major breeding target in rice,especially under direct seeding.To identify quantitative trait locus(QTL)affecting ESV,a recombinant inbred line population derived from a cross between 02428 and YZX,two cultivars differing in vigor during early seedling growth,was used for QTL analysis.Nine traits associated with ESV were examined using a high-density map.Of 16 additive loci identified,three were detected in two generations and thus considered stable.Four epistatic interactions were detected,one of which was repeated in two generations.Further analysis of the pyramiding effect of the three stable QTL showed that the phenotypic value could be effectively improved with an increasing number of QTL.These results were combined with results from our previous QTL analysis of the germination index.The lines G58 and G182 combined all the favourable alleles of all three stable QTL for ESV and three QTL for germination speed.These two lines showed rapid germination and strong ESV.A total of 37 candidate differentially expressed genes were obtained from the regions of the three stable QTL by analysis of the dynamic transcriptomic expression profile during the seedling growth period of the two parents.The QTL are targets for ESV breeding and the candidate genes await functional validation.This study provides a theoretical basis and a genetic resource for the breeding of directseeded rice.
基金National Key Research and Development Program of China(2016YFD0100201)Scientific Research Conditions Construction and Achievement Transformation Project of Gansu Academy of Agricultural Sciences(Modern Biological Breeding)(2019GAAS07)+1 种基金Science and Technology Major Project of Gansu Province(18ZD2NA008)Crop Germplasm Resources Protection(2017NWB036-5)。
文摘Drought is one of the primary abiotic stress factors affecting the yield,growth,and development of soybeans.In extreme cases,drought can reduce yield by more than 50%.The seedling stage is an important determinant of soybean growth:the number and vigor of seedlings will affect growth and yield at harvest.Therefore,it is important to study the drought resistance of soybean seedlings.In this study,a recombinant inbred line(RIL)population comprising 234 F_(6:10)lines(derived from Zhonghuang35×Jindou 21)and a panel of 259 soybean accessions was subjected to drought conditions to identify the effects on phenotypic traits under these conditions.Using a genetic map constructed by single nucleotide polymorphism(SNPs)markers,18 quantitative trait loci(QTL)on 7 soybean chromosomes were identified in two environments.This included 9 QTL clusters identified in the RIL population.Fifty-three QTL were identified in 19 soybean chromosomes by genome-wide association analysis(GWAS)in the panel of accessions,including 69 significant SNPs(-log_(10)(P)≥3.97).A combination of the two populations revealed that two SNPs(-log_(10)(P)≥3.0)fell within two of the QTL(qPH7-4 and qPH7-6)confidence intervals.We not only re-located several previously reported drought-resistance genes in soybean and other crops but also identified several non-synonymous stress-related mutation site differences between the two parents,involving Glyma.07 g093000,Glyma.07 g093200,Glyma.07 g094100 and Glyma.07 g094200.One previously unreported new gene related to drought stress,Glyma.07 g094200,was found by regional association analysis.The significant SNP CHR7-17619(G/T)was within an exon of the Glyma.07 g094200 gene.In the RIL population,the DSP value of the"T"allele of CHR7-17619 was significantly(P<0.05)larger than the"G"allele in different environments.The results of our study lay the groundwork for cloning and molecular marker-assisted selection of droughtresistance genes in soybeans at the seedling stage.
基金financially supported by the National Natural Science Foundation of China[Nos.81172593,81573081]
文摘The aim of the present study is to analyze the global research trend of radiation-responsive genes and identify the highly reproducible radiation-responsive genes. Bibliometric methods were applied to analyze the global research trend of radiation-responsive genes. We found 79 publications on radiation-responsive genes from 2000 to 2017. A total of 35 highly reproducible radiation-responsive genes were identified. Most genes are involved in response to DNA damage, cell proliferation, cell cycle regulation, and DNA repair.The p53 signal pathway was the top enriched pathway. The expression levels of 18 genes in human B lymphoblastoid cell line(AHH-1) cells were significantly up-regulated in a dose-dependent manner at 24 h after exposure to 0-5 Gy ^60 Coγ-ray irradiation. Our results indicate that developing a gene expression panel with the 35 high reproducibility radiation-responsive genes may be necessary for qualitative and quantitative assessment after exposure.
文摘The cDNA library of an ovary from Small Tail Han sheep before estrus was constructed by switching mechanism at 5' end of RNA transcript (SMART) approach. This library had a plaque titer of 1 x 109 pfu mL-1 and a 96% recombinant ratio of which the fragment length of inserted average cDNA sequences was 1.0 kb. Based on bioinformatics analysis of the sequences, we obtained 338 expressed sequence tags (ESTs) from 380 cDNA clones which indicated 191 contigs. These contigs consist of 89 unmatched ESTs, 9 homologous known genes in sheep, and 93 homologous sequences in species of mouse, bovine, and human beings, including 19 sequences expressed in the ovary or follicle and 14 unknown sequences. Several candidate genes associated with sheep reproduction trait such as epidermal growth factor (EGF), estrogen receptor (ESR), Inhibin, follicle stimulating hormone receptor (FSHR), prostaglandin (PG), and transforming growth factor-β (TGF-β) were identified and the homologous were cloned from this library, which will contribute to compile expression profiles and find the major genes of prolificacy of Small Tail Han sheep.
文摘E1 Tor Vibrio cholerae (EVC) strains may be classifled into two kinds-epidemigenic (EEVC) strains and non-epidemigenic (NEEVC) strains-based on a phage-biotyping system. A large number of EEVC strains have been screened for toxigenic and putative colonization attributes. One such naturally occurring strain (designated IEM 101) has been found which is devoid of genes encoding cholera toxin (CT), accessory cholera enterotoxin (ACE), zonula occludens toxin (ZOT), but possesses RS1 sequences and toxin-coregulated pilus A gene (tcpA) although tcpA is poorly expressed. It expresses type B pili but does not posses type C pili. It is an E1 Tor Ogawa strain and does not cause fluid accumulation in rabbit ileal loop tests. Active immunization of rabbits with strain IEM 101 elicited good protection against challenge with virulent strains of V cholerae O1. Oral administrationcaused no side effects in 15 human volunteers, colonized the gut for four to ten days and elicited good immune responses
基金supported by the National Science and Technology Major Project under Grants No.2013ZX03003016 and No.2015ZX03002008National High-tech R&D Program(863 Program)under Grants No.2014AA01A706
文摘Appropriate candidate frequency bands are extremely important for the development of future 5G systems. In this work, the researches on 5G spectrum around the world are summarized. Then the potential candidate frequency bands for 5G systems are investigated based on practical utilization of spectrum in China. For spectrum below 6GHz, the feasibility of possible frequency bands for 5G system are analyzed, which mainly come from 2G/3G/4G spectrum re-farming, the spectrum identified by footnotes for IMT systems in Regulations on the Radio Frequency Allocation of China, and potential candidate bands from WRC-15 Agenda Item 1.1. Moreover, propagation characteristics of WRC-15 candidate frequency bands proposed by China are measured and modeled to verify their effectiveness. For spectrum above 6GHz, the potential candidate frequency bands for 5G systems are selected based on the preliminary analysis of spectrum allocation, allotment and the current usage in China. Suggestions are provided for further studies on 5G spectrum.
基金Supported by National Natural Science Foundation of China(Grant No.51805131)Postdoctoral Research Foundation of China(Grant No.2018M640580)Fundamental Research Funds for the Central Universities(CN)Fundamental Research Funds for the Central Universities of China(Grant No.JZ2018HGBZ0155).
文摘There is a consensus in the aerospace field that the development of reusable liquid rockets can effectively reduce the launch expense.The pursuit of a long service life and reutilization highly depends on the bearing components.However,the rolling element bearings(REBs)used in the existing rocket turbopumps present obvious and increasing limitations due to their mechanical contacting mode.For REBs,high rotational speed and long service life are two performance indexes that mutually restrict each other.To go beyond the DN value(the product of the bearing bore and rotational speed)limit of REBs,the major space powers have conducted substantial explorations on the use of new types of bearings to replace the REB.This review discusses,first,the crucial role of bearings in rocket turbopumps and the related structural improvements of REBs.Then,with the prospect of application to the next generation of reusable liquid rocket turbopumps,the bearing candidates investigated by major space powers are summarized comprehensively.These promising alternatives to REBs include fluid-film,foil,and magnetic bearings,together with the novel superconducting compound bearings recently proposed by our team.Our more than ten years of relevant research on fluid-film and magnetic bearings are also introduced.This review is meaningful for the development of long-life and highly reliable bearings to be used in future reusable rocket turbopumps.
基金supported by the Major Program of National Agricultural Science and Technology of China (NK20220607)the National Natural Science Foundation of China (32272059 and31971883)the Science and Technology Department of Sichuan Province (2022ZDZX0014, 2021YFYZ0002, 2021YJ0297, and23NSFTD0045)。
文摘Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathogen races. In this study, a new resistance gene against Pst race CYR34 was identified and predicted using the descendants of a cross between AS1676, a highly resistant Chinese landrace, and Avocet S, a susceptible cultivar. From a heterozygous plant from a F7recombinant inbred line(RIL) population lacking the Yr18 gene, a near-isogenic line(NIL) population was developed to map the resistance gene. An allstage resistance gene, YrAS1676, was identified on chromosome arm 1AL via bulked-segregant exomecapture sequencing. By analyzing a large NIL population consisting of 6537 plants, the gene was further mapped to the marker interval between KA1A_485.36 and KA1A_490.13, spanning 485.36–490.13 Mb on1AL. A total of 66 annotated genes have been reported in this region. To characterize and predict the candidate gene(s), an RNA-seq was performed using NIL-R and NIL-S seedlings 3 days after CYR34 inoculation. Compared to NIL-S plants, NIL-R plants showed stronger immune reaction and higher expression levels of genes encoding pathogenesis-associated proteins. These differences may help to explain why NIL-R plants were more resistant to Pst race CYR34 than NIL-S plants. By combining fine-mapping and transcriptome sequencing, a calcium-dependent protein kinase gene was finally predicted as the potential candidate gene of YrAS1676. This gene contained a single-nucleotide polymorphism. The candidate gene was more highly expressed in NIL-R than in NIL-S plants. In field experiments with Pst challenge,the YrAS1676 genotype showed mitigation of disease damage and yield loss without adverse effects on tested agronomic traits. These results suggest that YrAS1676 has potential use in wheat stripe rust resistance breeding.
文摘The Middle-Upper Cambrian boundary is one of the current stratigraphical problems which remain openin the geological world, since there have been no universally acknowledged delimiting standard and stratotype.Acting on the instruction of Profs. Lu Yanhao and An Taixiang the author studied in details the Paibi Section,which is well exposed as a continuous sequence at an easily accessible locality. The Middle-Upper Cambrianboundary strata are composed of biocalcimicrosparite, indicating the sedimentary environment of anunderwater upheaval on the gentle slope along the frontal margin of the Yangtze carbonate platform. For the upper Middle and lower Upper Cambrian agnostid trilobite zones and conodont zones are erected,and a more accurate correlation between the trilobite and conodont sequences is established. Based on these,the Middle-Upper Cambrian boundary is drawn more reasonably and precisely than what was done before. Inshort, the section studied is superior to other known sections of Middle-Upper Cambrian. and it will probablybe an ideal candidate for the Middle-Upper Cambrian boundary stratotype.
基金funded by the Natural Science Foundations of China(No.31572357)to FPZAgricultural Science and Technology Innovation Program(ASTIP-IAS02)to LXW.
文摘Background:A run of homozygosity(ROH)is a consecutive tract of homozygous genotypes in an individual that indicates it has inherited the same ancestral haplotype from both parents.Genomic inbreeding can be quantified based on ROH.Genomic regions enriched with ROH may be indicative of selection sweeps and are known as ROH islands.We carried out ROH analyses in five Chinese indigenous sheep breeds;Altay sheep(n=50 individuals),Large-tailed Han sheep(n=50),Hulun Buir sheep(n=150),Short-tailed grassland sheep(n=150),and Tibetan sheep(n=50),using genotypes from an Ovine Infinium HD SNP BeadChip.Results:A total of 18,288 ROH were identified.The average number of ROH per individual across the five sheep breeds ranged from 39(Hulun Buir sheep)to 78(Large-tailed Han sheep)and the average length of ROH ranged from 0.929 Mb(Hulun Buir sheep)to 2.544 Mb(Large-tailed Han sheep).The effective population size(Ne)of Altay sheep,Large-tailed Han sheep,Hulun Buir sheep,Short-tailed grassland sheep and Tibetan sheep were estimated to be 81,78,253,238 and 70 five generations ago.The highest ROH-based inbreeding estimate(FROH)was 0.0808 in Large-tailed Han sheep,whereas the lowest F_(ROH)was 0.0148 in Hulun Buir sheep.Furthermore,the highest proportion of long ROH fragments(>5 Mb)was observed in the Large-tailed Han sheep breed which indicated recent inbreeding.In total,49 ROH islands(the top 0.1% of the SNPs most commonly observed in ROH)were identified in the five sheep breeds.Three ROH islands were common to all the five sheep breeds,and were located on OAR2:12.2-12.3 Mb,OAR12:78.4-79.1 Mb and OAR13:53.0-53.6 Mb.Three breed-specific ROH islands were observed in Altay sheep(OAR15:3.4-3.8 Mb),Large-tailed Han sheep(ORA17:53.5-53.8 Mb)and Tibetan sheep(ORA5:19.8-20.2 Mb).Collectively,the ROH islands harbored 78 unique genes,including 19 genes that have been documented as having associations with tail types,adaptation,growth,body size,reproduction or immune response.Conclusion:Different ROH patterns were observed in five Chinese indigenous sheep breeds,which reflected their different population histories.Large-tailed Han sheep had the highest genomic inbreeding coefficients and the highest proportion of long ROH fragments indicating recent inbreeding.Candidate genes in ROH islands could be used to illustrate the genetic characteristics of these five sheep breeds.Our findings contribute to the understanding of genetic diversity and population demography,and help design and implement breeding and conservation strategies for Chinese sheep.
基金supported by the National Natural Science Foundation of China(31571988)the Special Fund for Agro-scientific Research in the Public Interest, China (201503114)the National Key Basic Research Program of China (973 Program, 2013CB127502)
文摘Heterodera avenae (cereal cyst nematode, CCN) infects many cereal crops and causes serious yield losses worldwide. Interaction studies investigating H. avenae and its hosts are still in their infancy. In this study, a barley model plant, the Hordeum vulgare cultivar Golden Promise, was investigated for its potential as a candidate model host to study its inter- action with H. avenae. CCN-infective juveniles were attracted by the root tips and gathered around the root elongation zones of Golden Promise on 0.7% water agar plates. The juveniles invaded the roots and developed successfully until maturation at 40 days after inoculation in sterile sand soil. The cryotomy and syncytium measurements indicated that the syncytia enlarged gradually throughout the development of the nematodes and caused the corresponding root regions to swell obviously. Quantitative real-time PCR analysis showed that the down-regulation of defence-related barley genes and up-regulation Of development-related barley ger^es contribute to the understanding of compatible interaction between H. avenae and Golden Promise. Barley stripe mosaic virus (BSMV) virus-induced gene silencing (VIGS) can be used in the roots of Golden Promise. In conclusion, the Hordeum vulgare cultivar Golden Promise is a suitable candidate model host for interaction studies with Heterodera avenae. The studies presented above document the first CCN host that no.t only has published genome context but also be compatible to BSMV VIGS.
基金financial support from the Highlevel Scientific Reuter Foundation of Qingdao Agricultural University(Grant Nos.665/1118011,665/1119002)China Agriculture Research System of MOF and MARA(Grant No.CARS-29-yc-1)Crop Resources Protection Program of Ministry of Agriculture and Rural Affairs of China(Grant No.2130135-34).
文摘Fruit cracking is a phenomenon in which the peel cracks during grape berry development,which seriously affects the yield and quality of the fruit.However,there are few studies on the mining of candidate genes related to berry cracking.In order to better understand the genetic basis of berry cracking,we used the results of previous quantitative trait locus(QTL)mapping,combined with field surveys of berry-cracking types and the berry-cracking rate,to mine candidate berry-cracking genes.The results showed that three identical QTL loci were detected in two years(2019 and 2020);and three candidate genes were annotated in the QTL interval.In mature berries,the expressions of the candidate genes were more abundant in the cracking-susceptible parent(‘Crimson Seedless’)than in the cracking-resistant parent(‘Muscat Hamburg’).Grape berry cracking is a complex trait controlled by multiple genes,mainly including genes encoding cellulose synthase–like protein H1,glucan endo-1,3-beta-glucosidase 12,and brassinosteroid insensitive 1-associated receptor kinase 1.The high expression of the candidate berry-cracking genes may promote the occurrence of berry cracking.This study helps elucidate the genetic mechanism of grape berry cracking.