期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Effect of the L-D_(1)alleles on leaf morphology,canopy structure and photosynthetic productivity in upland cotton(Gossypium hirsutum L.) 被引量:1
1
作者 JIANG Hui GAO Ming-wei +7 位作者 CHEN Ying ZHANG Chao WANG Jia-bao CHAI Qi-chao WANG Yong-cui ZHENG Jin-xiu WANG Xiu-li ZHAO Jun-sheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期108-119,共12页
One of the most important objectives for breeders is to develop high-yield cultivars.The increase in crop yield has met with bottlenecks after the first green revolution,and more recent efforts have been focusing on a... One of the most important objectives for breeders is to develop high-yield cultivars.The increase in crop yield has met with bottlenecks after the first green revolution,and more recent efforts have been focusing on achieving high photosynthetic efficiency traits in order to enhance the yield.Leaf shape is a significant agronomic trait of upland cotton that affects plant and canopy architecture,yield,and other production attributes.The major leaf shape types,including normal,sub-okra,okra,and super-okra,with varying levels of lobe severity,are controlled by a multiple allelic series of the D-genome locus L-D_(1).To analyze the effects of L-D_(1)alleles on leaf morphology,photosynthetic related traits and yield of cotton,two sets of near isogenic lines(NILs)with different alleles were constructed in Lumianyan 22(LMY22)and Lumianyan 28(LMY28)backgrounds.The analysis of morphological parameters and the results of virus-induced gene silencing(VIGS)showed that the regulation of leaf shape by L-D_(1)alleles was similar to a gene-dosage effect.Compared with the normal leaf,deeper lobes of the sub-okra leaf improved plant canopy structure by decreasing the leaf area index(LAI)and increasing the light transmittance rate(LTR),and the mid-range LAI of sub-okra leaf also guaranteed the accumulation of cotton biomass.Although the chlorophyll content(SPAD)of sub-okra leaf was lower than those of the other two leaf shapes,the net photosynthetic rate(Pn)of sub-okra leaf was higher than those of okra leaf and normal leaf at most stages.Thus,the improvements in canopy structure,as well as photosynthetic and physiological characteristics,contributed to optimizing the light environment,thereby increasing the total biomass and yield in the lines with a sub-okra leaf shape.Our results suggest that the sub-okra leaf may have practical application in cultivating varieties,and could enhance sustainable and profitable cotton production. 展开更多
关键词 PHOTOSYNTHESIS canopy structure YIELD BIOMASS sub-okra leaf shape
下载PDF
Quantitative analysis of the effect of the PAY1 gene on rice canopy structure during different reproductive stages 被引量:5
2
作者 WEI Cui-lan CAO Bing-shuai +1 位作者 HUA Shan LI Bao-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第12期3488-3500,共13页
The leaf and stem types are core structural characteristics of the rice phenotype that determine the light interception ability of the canopy and directly affect crop yield.The PLANT ARCHITECTURE AND YIELD 1(PAY1)gene... The leaf and stem types are core structural characteristics of the rice phenotype that determine the light interception ability of the canopy and directly affect crop yield.The PLANT ARCHITECTURE AND YIELD 1(PAY1)gene has been shown to alter the prostrate growth habit of wild rice and to inhibit the wild rice prostrate growth gene PROSTRATE GROWTH 1(PROG1).In this paper,the wild rice introgression line YIL55,which contains the PROG1 gene;its mutant,PAY1;and its parent,TQ,were used as test varieties to construct three-dimensional(3D)canopy structure models based on 3D digital assay technology.On this basis,quantitative analyses of the PAY1 gene and the plant leaf and stem types at the jointing,heading and filling stages were performed.Under the influence of the PAY1 gene,the plant stem and leaf angles from vertical decreased significantly;the plants were upright,with larger leaves;the culm angle changed from loose to compact;and the average tiller angle during the three key reproductive stages decreased from 44.9,28.5 and 21.3°to 17.6,8.4 and 10.5°,respectively.Moreover,the PAY1 mutant retained the PROG1 gene characteristic of exhibiting dynamic changes in the tiller angle throughout the growth period,and its culm angle changed from loose during the jointing stage to compact during the heading stage.The measurements of photosynthetically active radiation(PAR)in the canopy also showed that the mutant PAY1 allowed more PAR to reach the bottom of the canopy than the other varieties.The light-extinction coefficients for PAY1 at the jointing,heading and filling stages were 0.535,0.312 and 0.586,respectively,which were lower than those of the other two varieties.In this study,the influence of the PAY1 gene on rice canopy structural characteristics was quantitatively analyzed to provide effective canopy structure parameters for breeding the ideal plant type. 展开更多
关键词 RICE plant type 3D digitization technology canopy structure
下载PDF
Plant Type and Its Effects on Canopy Structure at Heading Stage in Various Ecological Areas for a Two-line Hybrid Rice Combination,Liangyoupeijiu 被引量:3
3
作者 LU Chuan-gen Hu Ning +2 位作者 YAO Ke-min XIA Shi-jian QI Qing-ming 《Rice science》 SCIE 2010年第3期235-242,共8页
A two-line hybrid rice combination, Liangyoupeijiu, was used to estimate several factors of plant type, and environmental models for these factors at the heading stage were established using the data of eight ecologic... A two-line hybrid rice combination, Liangyoupeijiu, was used to estimate several factors of plant type, and environmental models for these factors at the heading stage were established using the data of eight ecological experimental sites in 2006 and 2007. According to climatic data from 1951 to 2005, the differences in those factors and their effects on plant canopy were analyzed for four rice cropping areas in China, including South China, the middle-lower reaches of the Yangtze River, Sichuan Basin, and river valley in Yunnan, China. The thickness of leaf layer (the distance from pulvinus of the third leaf from the top to the tip of flag leaf) and distribution of leaf area could be used as candidate indices for the plant type of a rice canopy. 展开更多
关键词 hybrid rice plant type MODEL ecological area canopy structure INDEX
下载PDF
Leaf pigment retrieval using the PROSAIL model: Influence of uncertainty in prior canopy-structure information 被引量:2
4
作者 Jia Sun Lunche Wang +5 位作者 Shuo Shi Zhenhai Li Jian Yang Wei Gong Shaoqiang Wang Torbern Tagesson 《The Crop Journal》 SCIE CSCD 2022年第5期1251-1263,共13页
Leaf pigments are critical indicators of plant photosynthesis,stress,and physiological conditions.Inversion of radiative transfer models(RTMs)is a promising method for robustly retrieving leaf biochem-ical traits from... Leaf pigments are critical indicators of plant photosynthesis,stress,and physiological conditions.Inversion of radiative transfer models(RTMs)is a promising method for robustly retrieving leaf biochem-ical traits from canopy observations,and adding prior information has been effective in alleviating the“ill-posed”problem,a major challenge in model inversion.Canopy structure parameters,such as leaf area index(LAI)and average leaf inclination angle(ALA),can serve as prior information for leaf pigment retrie-val.Using canopy spectra simulated from the PROSAIL model,we estimated the effects of uncertainty in LAI and ALA used as prior information for lookup table-based inversions of leaf chlorophyll(C _(ab))and car-otenoid(C_(ar)).The retrieval accuracies of the two pigments were increased by use of the priors of LAI(RMSE of C_(ab) from 7.67 to 6.32μg cm^(-2),C_(ar) from 2.41 to 2.28μg cm^(-2))and ALA(RMSE of C_(ab) from 7.67 to 5.72μg cm^(-2),C_(ar) from 2.41 to 2.23μg cm^(-2)).However,this improvement deteriorated with an increase of additive and multiplicative uncertainties,and when 40% and 20% noise was added to LAI and ALA respectively,these priors ceased to increase retrieval accuracy.Validation using an experimental winter wheat dataset also showed that compared with C_(ar),the estimation accuracy of C_(ab) increased more or deteriorated less with uncertainty in prior canopy structure.This study demonstrates possible limita-tions of using prior information in RTM inversions for retrieval of leaf biochemistry,when large uncer-tainties are present. 展开更多
关键词 Leaf pigment PROSAIL model canopy structure Chlorophyll content Leaf area index Leaf angle distribution
下载PDF
Effects of Row-Spacing on Canopy Structure and Yield in Different Plant Type Rice Cultivars 被引量:2
5
作者 Zhao Hai-xin Wang Xiao-xue +2 位作者 Guo Zhen-hua Huang Xiao-qun Liu Hua-long 《Journal of Northeast Agricultural University(English Edition)》 CAS 2012年第4期11-19,共9页
Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structur... Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structure, morphological characteristics and yield. The results showed that the percentage of productive tiller reduced first, and increased afterwards as row-spacing increasing. The relationship between row spacing and the percentage of productive tiller fitted a quadratic regression. The effects of row spacing on leaf area index (LAI) at later tillering stage and the highest stem number per square meter also followed a quadratic regression relationship with increasing first and then reducing. The effects of row-spacing on primary branch were larger than the secondary branch in Longjing 20. However, the trend in Longjing 21 was opposite. The relationship between row spacing and seed setting rate of the secondary branch or panicle was negatively correlated. An extreme significant negative correlation was obtained between seed setting rate of secondary branch in Longjing 20. There was no significant positive correlation between row-spacing and yield in Longjing 20 (R2=0.68). However, the negative correlation between row-spacing and yield of Longjing 21 was extremely significant (R2=–0.96**). The canopy structure of MCP was more sensitive to row-spacing. The positive correlation between row spacing and the length of the flag leaf (R2=0.89**), the width of the flag leaf (R2=0.85*), the length of the last internode (R2=0.85*), the length of the last 2nd internode (R2=0.96**) or the length of the panicle (R2=0.91**) was significant or extremely significant in Longjing 20, but not in Longjing 21. The wider row-spacing promoted the accumulation of the dry matter of panicle, stem and leaf and the yield formation in MCP. The best row-spacing in Longjing 20 was 30 cm. For Longjing 21, the narrower row-spacing was better. The best row-spacing of it was 21 cm. These results suggested that improved the population environment of MCP or the utilization of the free space in the field of FEP could be reached either by wider row-spacing or narrow row-spacing. 展开更多
关键词 row-spacing more tillers and curved panicle type (MCP) few tillers and half erect panicle type (FEP) canopy structure morphological characteristic YIELD
下载PDF
Effects of tsaoko (Fructus tsaoko) cultivating on tree diversity and canopy structure in the habitats of eastern hoolock gibbon (Hoolock leuconedys) 被引量:1
6
作者 Sheng-Dong YUAN Han-Lan FEI +3 位作者 Shao-Han ZHU Liang-Wei CUI Huai-Sen AI Peng-Fei FAN 《Zoological Research》 CAS CSCD 北大核心 2014年第3期231-239,共9页
In this study, the quadrat method was used to study the effects of tsaoko (Fructus tsaoko) plantation on tree diversity and canopy structure of two natural habitats of eastern hoolock gibbon (Hoolock leuconedys):... In this study, the quadrat method was used to study the effects of tsaoko (Fructus tsaoko) plantation on tree diversity and canopy structure of two natural habitats of eastern hoolock gibbon (Hoolock leuconedys): Nankang (characterized by extensive tsaoko plantation) and Banchang (relatively well reserved and without tsaoko plantation). Totally, 102 tree species from 25 families and 16 woody liana species from 10 families were recorded in Nankang, whereas 108 tree species from 30 families and 17 woody liana species from 12 families were recorded in Banchang. Although the tree species between two habitats is different, both habitats are characterized by enriched food resources for eastern hoolock gibbons, sharing similar dominant plant families. Due to tsaoko plantation, tree density proportion and diversity of forest layer I (〉20 m) in Nankang were both significantly decreased, but the tree density of layerH (10-20 m) increased. Likewise, in conjunction with these behavioral observations, we also address potential impacts of tsaoko plantation on the behavior of eastern hoolock gibbon. 展开更多
关键词 Eastern hoolock gibbon (Hoolock leuconedys) HABITAT Tree diversity canopy structure Fructus tsaoko plantation Mt.Gaoligong
下载PDF
Identification of Wheat Canopy Structure Using Hyperspectral Data 被引量:1
7
作者 LU Yan-li WANG Ji-hua +3 位作者 LI Shao-kun XIE Rui-zhi GAO Shi-ju MA Da-ling 《Agricultural Sciences in China》 CAS CSCD 2005年第9期668-672,共5页
Some winter wheat varieties were selected in this experiment. The results were as follows: 1) Leaf orientation value (LOV) and leaf area index (LAI) of wheat had different contributions to canopy spectral reflec... Some winter wheat varieties were selected in this experiment. The results were as follows: 1) Leaf orientation value (LOV) and leaf area index (LAI) of wheat had different contributions to canopy spectral reflectance (CSR). For example, LOV affected greatly canopy spectra more than LAI did in jointing stage, but LAI had a greater effect on CSR than LOV did after the ground was near to be covered completely. 2) Twenty treatments including different varieties and densities were arranged in this experiment, and the result of cluster analysis showed that all these treatments can be parted into four clusters according to LAI and LOV: varieties with erect leaves and low LAI (denoted as A), varieties with erect leaves and high LAI (denoted as B), varieties with horizontal leaves and low LAI (denoted as C), varieties with horizontal leaves and high LAI (denoted as D). Their CSR had difference in 400-700 nm and 700-1 150 nm at jointing stage, especially in different plant types. 3) There was obvious distribution difference among different clusters in scatter plot (X=△R890, Y=R890), △R890 was the reflectance increment from jointing to booting stage. It was seen from the Y-axis direction that R890 of horizontal varieties were higher than the erect ones, and seen from the X-axis direction that the greater △R890 was, the lower LAI one within the same plant type varieties, which indicted that the combination of plant-type and the population magnitude can be initially identified by this method. 展开更多
关键词 Winter wheat Plant type canopy structure HYPERSPECTRAL
下载PDF
Fractal Characteristics of Population Canopy Structure of the Mangrove,Bruguiera gymnorrhiza (L.) Lamk
8
作者 梁士楚 王伯荪 《Marine Science Bulletin》 CAS 2003年第2期54-61,共8页
The fractal characteristics of the canopy structure of B. gymnorrhiza population are investigated by fractal dimension analysis in the National Shankou Mangrove Nature Reserve. The 3-year-old branches have box dimensi... The fractal characteristics of the canopy structure of B. gymnorrhiza population are investigated by fractal dimension analysis in the National Shankou Mangrove Nature Reserve. The 3-year-old branches have box dimensions between 1.22 and 1.55, showing the complexity degree of branching structure and the ability of occupying and utilizing ecological space. It may be considered that fractal dimension provides a useful index for the study of light utilization efficiencies and growth processes of B. gymnorrhiza. Calculated by using the two-surface method, the fractal dimensions for the crown pattern of individuals with ages of 20 to 50 years range from 2.21 to 2.54, indicating that the filling degree of foliage to a tree crown is relatively low and B. gymnorrhiza has the property of a sun plant. Along with the increase of ages of individuals, the filling degree of foliage to a tree crown changes from high to low, and so does the fractal dimension. The box dimensions obtained from the grayscale curves of population canopy are between 1.47 and 1.61. The greater the box dimension, the more loosely organized the canopy spatial structure, and the more the light spots. The canopy structural information and complexity of a population can be effectively captured by box dimensions obtained from canopy grayscale curves. 展开更多
关键词 MANGROVE B. gymnorrhiza population canopy structure fractals
下载PDF
Remote sensing of subtropical tree diversity:The underappreciated roles of the practical definition of forest canopy and phenological variation
9
作者 Yongchao Liu Ruyun Zhang +11 位作者 Chen-Feng Lin Zhaochen Zhang Ran Zhang Kankan Shang Mingshui Zhao Jingyue Huang Xiaoning Wang You Li Yulin Zeng Yun-Peng Zhao Jian Zhang Dingliang Xing 《Forest Ecosystems》 SCIE CSCD 2023年第3期378-386,共9页
Tree species diversity is vital for maintaining ecosystem functions,yet our ability to map the distribution of tree diversity is limited due to difficulties in traditional field-based approaches.Recent developments in... Tree species diversity is vital for maintaining ecosystem functions,yet our ability to map the distribution of tree diversity is limited due to difficulties in traditional field-based approaches.Recent developments in spaceborne remote sensing provide unprecedented opportunities to map and monitor tree diversity more efficiently.Here we built partial least squares regression models using the multispectral surface reflectance acquired by Sentinel-2 satellites and the inventory data from 74 subtropical forest plots to predict canopy tree diversity in a national natural reserve in eastern China.In particular,we evaluated the underappreciated roles of the practical definition of forest canopy and phenological variation in predicting tree diversity by testing three different definitions of canopy trees and comparing models built using satellite imagery of different seasons.Our best models explained 42%–63%variations in observed diversities in cross-validation tests,with higher explanation power for diversity indices that are more sensitive to abundant species.The models built using imageries from early spring and late autumn showed consistently better fits than those built using data from other seasons,highlighting the significant role of transitional phenology in remotely sensing plant diversity.Our results suggested that the cumulative diameter(60%–80%)of the biggest trees is a better way to define the canopy layer than using the subjective fixeddiameter-threshold(5–12 cm)or the cumulative basal area(90%–95%)of the biggest trees.Remarkably,these approaches resulted in contrasting diversity maps that call attention to canopy structure in remote sensing of tree diversity.This study demonstrates the potential of mapping and monitoring tree diversity using the Sentinal-2 data in species-rich forests. 展开更多
关键词 canopy structure Multispectral remote sensing Seasonal phenology Subtropical forest Tree species diversity
下载PDF
Relationship between plant canopy characteristics and photosynthetic productivity in diverse cultivars of cotton(Gossypium hirsutum L.) 被引量:6
10
作者 Guoyi Feng Honghai Luo +4 位作者 Yali Zhang Ling Gou Yandi Yao Yongzeng Lin Wangfeng Zhang 《The Crop Journal》 SCIE CAS CSCD 2016年第6期499-508,共10页
Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we... Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we had selected two cotton hybrids(Shiza 2,Xinluzao 43) and two conventional varieties(Xinluzao 13,Xinluzao 33) with different plant types in this experiment.We studied canopy characteristics and their correlation with photosynthesis in populations of different genotypes and plant types during yield formation in Xinjiang,China.Canopy characteristics including leaf area index(LAI),mean foliage tilt angle(MTA),canopy openness(DIFN),and chlorophyll relative content(SPAD).The results showed that LAI and SPAD peak values were higher and their peak values arrived later,and the adjustment capacity of MTA during the flowering and boll-forming stages was stronger in Xinluzao 43,with the normal-leaf,pagoda plant type,than these values in other varieties.DIFN of Xinluzao 43 remained between0.09 and 0.12 during the flowering and boll-forming stages,but was lower than that in the other varieties during the boll-opening stage.Thus,these characteristics of Xinluzao 43 were helpful for optimizing the light environment and maximizing light interception,thereby increasing photosynthetic capability.The photosynthetic rate and photosynthetic area were thus affected by cotton genotype as changes in the adjustment range of MTA,increases in peak values of LAI and SPAD,and extension of the functional stage of leaves.Available photosynthetic area and canopy light environment were affected by cotton plant type as changes in MTA and DIFN.Heterosis expression and plant type development were coordinated during different growth stages,the key to optimizing the canopy structure and further increasing yield. 展开更多
关键词 Cotton(Gossypium hirsutum L.) VARIETIES Plant type canopy structure Photosynthetic rate
下载PDF
Environmental and canopy conditions regulate the forest floor evapotranspiration of larch plantations 被引量:2
11
作者 Zebin Liu Yanhui Wang +2 位作者 Pengtao Yu Lihong Xu Songping Yu 《Forest Ecosystems》 SCIE CSCD 2022年第5期606-616,共11页
Background:Integrated forest-water management focusing on forest-water coordination is an important way to alleviate water use conflicts among forests and other sectors in vast dryland regions.Forest floor evapotransp... Background:Integrated forest-water management focusing on forest-water coordination is an important way to alleviate water use conflicts among forests and other sectors in vast dryland regions.Forest floor evapotranspiration(FE),which is an important component of forest evapotranspiration,accounts for a large proportion of the water consumed in arid forests.Elucidating how environmental and canopy conditions impact FE has important significance for guiding integrated forest-water management in a changing environment.Methods:The microlysimeter(ML)-measured evapotranspiration(FE_(ML)),reference evapotranspiration(ET_(o)),volumetric soil moisture(VSM),and canopy leaf area index(LAI)were monitored in a Larix principis-rupprechtii plantation located in the semi-humid Liupan Mountains of Northwest China in 2019(June–September)and 2021(May–September).The response functions of the FE coefficient(the ratio of daily FEML to ET_(o))to the individual factors of VSM and LAI were determined using upper boundary lines of scatter diagrams of measured data.The framework of the daily FE(FE_(ML))model was established by multiplying the response functions to individual factors and then calibrated and validated using measured data to assess the FE response to environmental and canopy conditions.Results:(1)The FE coefficient increased first rapidly and then slowly with rising VSM but decreased slowly with rising LAI.(2)The simple daily FE(FE_(ML))model developed by coupling the impacts of ET_(o),LAI,and VSM in this study performed well for predicting FE.(3)The impacts of ET_(o),LAI,and VSM were quantified using the FE(FE_(ML))model,e.g.,at a given VSM,the impact of ETo on FE increased obviously with decreasing LAI;at a given ET_(o),the impact of LAI on FE increased with rising VSM.(4)In the two study years,when directly using the microlysimeter measurement,the real FE on the forest floor was overestimated when the VSM in microlysimeters was above 0.215 but underestimated below 0.215 due to the difference in VSM from the forest floor.Thus,the VSM on the forest floor should be input into the FE model for estimating the real FE on the forest floor.Conclusions:The daily FE of larch plantation is controlled by three main factors of environmental(ET_(o) and VSM)and canopy conditions(LAI).The variation in daily FE on the forest floor can be well estimated using the simple FE model coupling the effects of the three main factors and by inputting the VSM on the forest floor into the model to avoid the errors when directly using the microlysimeter measurement with different VSMs from the forest floor.The developed FE model and suggested prediction approach are helpful to estimate the FE response to changing conditions,and to guide forest management practices when saving water by thinning is required. 展开更多
关键词 Larch plantation Forest floor evapotranspiration Reference evapotranspiration Soil water content canopy structure
下载PDF
Estimation and testing of linkages between forest structure and rainfall interception characteristics of a Robinia pseudoacacia plantation on China’s Loess Plateau 被引量:1
12
作者 Changkun Ma Yi Luo +1 位作者 Mingan Shao Xiaoxu Jia 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第2期529-542,共14页
Understanding the interaction between canopy structure and the parameters of interception loss is essential in predicting the variations in partitioning rainfall and water resources as affected by changes in canopy st... Understanding the interaction between canopy structure and the parameters of interception loss is essential in predicting the variations in partitioning rainfall and water resources as affected by changes in canopy structure and in implementing water-based management in semiarid forest plantations.In this study,seasonal variations in rainfall interception loss and canopy storage capacity as driven by canopy structure were predicted and the linkages were tested using seasonal filed measurements.The study was conducted in nine 50 m×50 m Robinia pseudoacacia plots in the semiarid region of China’s Loess Plateau.Gross rain-fall,throughfall and stemflow were measured in seasons with and without leaves in 2015 and 2016.Results show that measured average interception loss for the nine plots were 17.9% and 9.4% of gross rainfall during periods with leaves (the growing season) and without leaves, respectively. Average canopy storage capacity estimated using an indirect method was 1.3 mm in the growing season and 0.2 mm in the leafless season. Correlations of relative interception loss and canopy storage capacity to canopy variables were highest for leaf/wood area index (LAI/WAI) and canopy cover, fol-lowed by bark area, basal area, tree height and stand density. Combined canopy cover, leaf/wood area index and bark area multiple regression models of interception loss and canopy storage capacity were established for the growing season and in the leafless season in 2015. It explained 97% and 96% of the variations in relative interception loss during seasons with and without leaves, respectively. It also explained 98% and 99% of the variations in canopy storage capacity during seasons with and without leaves, respectively. The empiri-cal regression models were validated using field data col-lected in 2016. The models satisfactorily predicted relative interception loss and canopy storage capacity during seasons with and without leaves. This study provides greater under-standing about the effects of changes in tree canopy structure (e.g., dieback or mortality) on hydrological processes. 展开更多
关键词 Rainfall interception loss canopy storage canopy structure Regression models China’s Loess Plateau
下载PDF
Canopy structure:An intermediate factor regulating grassland diversity-function relationships under human disturbances 被引量:1
13
作者 Xiaoxia Zhao Yuhao Feng +9 位作者 Kexin Xu Mengqi Cao Shuya Hu Qiuli Yang Xiaoqiang Liu Qin Ma Tianyu Hu Maggi Kelly Qinghua Guo Yanjun Su 《Fundamental Research》 CAS CSCD 2023年第2期179-187,共9页
Grasslands are one of the largest coupled human-nature terrestrial ecosystems on Earth,and severe anthropogenic-induced grassland ecosystem function declines have been reported recently.Understanding factors influenci... Grasslands are one of the largest coupled human-nature terrestrial ecosystems on Earth,and severe anthropogenic-induced grassland ecosystem function declines have been reported recently.Understanding factors influencing grassland ecosystem functions is critical for making sustainable management policies.Canopy structure is an important factor influencing plant growth through mediating within-canopy microclimate(e.g.,light,water,and wind),and it is found coordinating tightly with plant species diversity to influence forest ecosystem functions.However,the role of canopy structure in regulating grassland ecosystem functions along with plant species diversity has been rarely investigated.Here,we investigated this problem by collecting field data from 170 field plots distributed along an over 2000 km transect across the northern agro-pastoral ecotone of China.Aboveground net primary productivity(ANPP)and resilience,two indicators of grassland ecosystem functions,were measured from field data and satellite remote sensing data.Terrestrial laser scanning data were collected to measure canopy structure(represented by mean height and canopy cover).Our results showed that plant species diversity was positively correlated to canopy structural traits,and negatively correlated to human activity intensity.Canopy structure was a significant indicator for ANPP and resilience,but their correlations were inconsistent under different human activity intensity levels.Compared to plant species diversity,canopy structural traits were better indicators for grassland ecosystem functions,especially for ANPP.Through structure equation modeling analyses,we found that plant species diversity did not have a direct influence on ANPP under human disturbances.Instead,it had a strong indirect effect on ANPP by altering canopy structural traits.As to resilience,plant species diversity had both a direct positive contribution and an indirect contribution through mediating canopy cover.This study highlights that canopy structure is an important intermediate factor regulating grassland diversity-function relationships under human disturbances,which should be included in future grassland monitoring and management. 展开更多
关键词 Grassland ecosystem function canopy structure Plant species diversity Human activity intensity Northern agro-pastoral ecotone
原文传递
Direct measurement of the three-dimensional distribution of leaf area density and light conditions in a mature oak stand by the cube method
14
作者 Chiharu Migita Yukihiro Chiba Tanaka Kenzo 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期1817-1827,共11页
Although the distributions of foliage and light play major roles in various forest functions,accurate,nondestructive measurement of these distributions is difficult due to the complexity of the canopy structure.To eva... Although the distributions of foliage and light play major roles in various forest functions,accurate,nondestructive measurement of these distributions is difficult due to the complexity of the canopy structure.To evaluate the foliage and light distributions directly and nondestructively in a mature oak stand,we used the cube method by dividing the forest canopy into small cubes(50 cm per side)and directly measured leaf area density(LAD,the total one-sided leaf area per unit volume,i.e.,cube)and relative irradiance(RI)within each cube.The distribution of LAD and of RI was highly heterogeneous,even at the same canopy height.This heterogeneity reflected the presence of foliage clusters associated with multiple forking branches.The relationship between cumulative LAD at the canopy surface and average RI followed the Beer-Lambert law.The mean light extinction coefficient(K)was 0.32.However,K was overestimated by more than double(0.80)when calculated based on the classical method using RI at the forest floor.This overestimation was caused by the lower RI due to light absorption by nonleaf plant parts below the canopy.Our findings on the complex foliage and light distributions in canopy layers should help improve the accuracy of RI and K measurements and thus more accurate predictions of environmental responses and forest functions. 展开更多
关键词 Beer-Lambert law canopy structure Foliage cluster Leaf area density Leaf area index Relative light intensity
下载PDF
Improving maize grain yield by formulating plant growth regulator strategies in North China 被引量:13
15
作者 GONG Li-sha QU Shu-jie +5 位作者 HUANG Guan-min GUO Yu-ling ZHANG Ming-cai LI Zhao-hu ZHOU Yu-yi DUAN Liu-sheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期622-632,共11页
Plant growth regulators(PGRs) are artificially synthesized compounds that have become an important technical guarantee for agricultural production. EDAH(containing 27% ethephon and 3% DA-6) has been proven to inhibit ... Plant growth regulators(PGRs) are artificially synthesized compounds that have become an important technical guarantee for agricultural production. EDAH(containing 27% ethephon and 3% DA-6) has been proven to inhibit stalk elongation, promote stalk bold and increase mechanical strength and number of vascular bundles. DA-6 could enhance plant photosynthetic capacity and promote cell division and growth. In our study, experiments were performed at summer maize growing season during 2018–2019. The result showed that plant height, ear height and center of gravity height of maize with EDAH+DA-6 treatment were decreased by 10.18, 16.77 and 13.21%, respectively;leaf area and leaf area index also significantly(P<0.001) decreased by 24.11 and 60.15%, respectively;the value of mean tilt angle significantly(P<0.001) increased by 16.72% compared with the control plants, which meant that EDAH+DA-6 could shape more compact plant type. Therefore, lodging rate of maize with EDAH+DA-6 treatment decreased by 6.95% compared with control plants, and the grain yield was increased by 15.51%. In addition, EDAH+DA-6 treatment significantly improved the quality of maize base stalks, such as improving mechanical properties, which increased maize base stalk crushing strength by 22.23%;increased the hemicellulose, cellulose and lignin contents by 6.93, 3.87 and 30.21%, respectively. In conclusion, EDAH+DA-6 treatment could improve summer maize yield by shaping plant morphological characteristics and group photosynthesis. 展开更多
关键词 plant grown regulators canopy structure lodging resistance PHOTOSYNTHETIC
下载PDF
Performance and Analysis of a Model for Describing Layered Leaf Area Index of Rice 被引量:4
16
作者 LU Chuan-gen YAO Ke-min HU Ning 《Agricultural Sciences in China》 CAS CSCD 2011年第3期351-362,共12页
Layered leaf area index (LAIk) is one of the major determinants for rice canopy. The objective of this study is to attain rice LAI k using morphological traits especially leaf traits that affected plant type. A theo... Layered leaf area index (LAIk) is one of the major determinants for rice canopy. The objective of this study is to attain rice LAI k using morphological traits especially leaf traits that affected plant type. A theoretical model based on rice geometrical structure was established to describe LAI k of rice with leaf length (Li), width (Wi), angle (Ai), and space (Si), and plant pole height (H) at booting and heading stages. In correlation with traditional manual measurement, the model was performed by high R2-values (0.95-0.89, n=24) for four rice hybrids (Liangyoupeijiu, Liangyou E32, Liangyou Y06, and Shanyou 63) with various plant types and four densities (3 750, 2 812, 1 875, and 1 125 plants per 100 m2) of a particular hybrid (Liangyoupeijiu). The analysis of leaf length, width, angle, and space on LAI k for two hybrids (Liangyoupeijiu and Shanyou 63) showed that leaves length and space exhibited greater effects on the change of rice LAI k . The radiation intensity showed a significantly negative exponential relation to the accumulation of LAI k , which agreed to the coefficient of light extinction (K). Our results suggest that plant type regulates radiation distribution through changing LAI k . The present model would be helpful to acquire leaf distribution and judge canopy structure of rice field by computer system after a simple and less-invasive measurement of leaf length, width, angle (by photo), and space at field with non-dilapidation of plants. 展开更多
关键词 canopy structure layered leaf area index (LAI k MODEL plant type RICE
下载PDF
Deciphering the morpho–physiological traits for high yield potential in nitrogen efficient varieties(NEVs):A japonica rice case study 被引量:3
17
作者 ZHU Kuan-yu YAN Jia-qian +4 位作者 SHEN Yong ZHANG Wei-yang XU Yun-ji WANG Zhi-qin YANG Jian-chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第4期947-963,共17页
The use of nitrogen(N)-efficient rice(Oryza sativa L.) varieties could reduce excessive N input without sacrificing yields. However, the plant traits associated with N-efficient rice varieties have not been fully defi... The use of nitrogen(N)-efficient rice(Oryza sativa L.) varieties could reduce excessive N input without sacrificing yields. However, the plant traits associated with N-efficient rice varieties have not been fully defined or comprehensively explored. Here, three japonica N-efficient varieties(NEVs) and three japonica N-inefficient varieties(NIVs) of rice were grown in a paddy field under N omission(0 N, 0 kg N ha^(-1)) and normal N(NN, 180 or 200 kg N ha^(-1)) treatments. Results showed that NEVs exhibited higher grain yield and nitrogen use efficiency(NUE) than NIVs under both treatments, due to improved sink size and filled-grains percentage in the former which had higher root oxidation activity and greater root dry weight, root length and root diameter at panicle initiation(PI), as well as higher spikelet-leaf ratio and more productive tillers during the grain-filling stage. Compared with NIVs, NEVs also exhibited enhanced N translocation and dry matter accumulation after heading and improved flag leaf morpho-physiological traits, including greater leaf thickness and specific leaf weight and higher contents of ribulose^(-1),5-bisphosphate carboxylase/oxygenase, chlorophyll, nitrogen, and soluble sugars, leading to better photosynthetic performance. Additionally, NEVs had a better canopy structure, as reflected by a higher ratio of the extinction coefficient for effective leaf N to the light extinction coefficient, leading to enhanced canopy photosynthesis and dry matter accumulation. These improved agronomic and physiological traits were positively and significantly correlated with grain yield and internal NUE, which could be used to select and breed N-efficient rice varieties. 展开更多
关键词 RICE N-efficient varieties nitrogen use efficiency root morpho–physiological traits nitrogen translocation leaf morphology canopy structure
下载PDF
Inversion of Biochemical Parameters by Selection of Proper Vegetation Index in Winter Wheat 被引量:2
18
作者 HUANGWen-jiang WANGJi-hua +3 位作者 LIULiang-yun ZHAOChun-jiang WANGZhi-jie WANGJin-di 《Agricultural Sciences in China》 CAS CSCD 2004年第3期178-185,共8页
Recent studies have demonstrated the application of vegetation indices from canopy reflectedspectrum for inversion of chlorophyll concentration. Some indices are both response tovariations of vegetation and environmen... Recent studies have demonstrated the application of vegetation indices from canopy reflectedspectrum for inversion of chlorophyll concentration. Some indices are both response tovariations of vegetation and environmental factors. Canopy chlorophyll concentration, anindicator of photosynthesis activity, is related to nitrogen concentration in green vegetationand serves as an indicator of the crop response to soil nitrogen fertilizer application. Thecombination of normalized difference vegetation index (NDVI) and photochemical reflectanceindex (PRI) can reduce the effect of leaf area index (LAI) and soil background. The canopychlorophyll inversion index (CCII) was proved to be sensitive to chlorophyll concentration andvery resistant to the other variations. This paper introduced the ratio of TCARI/OSAVI to makeaccurate predictions of winter wheat chlorophyll concentration under different cultivars. Itindicated that canopy chlorophyll concentration could be evaluated by some combined vegetationindices. 展开更多
关键词 Winter wheat canopy reflected spectrum structure Insensitive Vegetation Index Chlorophyll concentration
下载PDF
Verification of Net Primary Production Estimation Method in the Mongolian Plateau Using Landsat ETM+ Data
19
作者 XIONGYan KanakoMuramatsu +5 位作者 MasahiroHirata KazatoOishi IchirowKaihotsu TamioTakamura ShinobuFurumi NoboruFujiwara 《Geo-Spatial Information Science》 2004年第2期117-122,共6页
We plan to estimate global net primary production (NPP) of vegetation using the Advanced Earth Observing Satellite\|Ⅱ (ADEOS\|Ⅱ) Global Imager (GLI) multi\|spectral data. We derive an NPP estimation algorithm from g... We plan to estimate global net primary production (NPP) of vegetation using the Advanced Earth Observing Satellite\|Ⅱ (ADEOS\|Ⅱ) Global Imager (GLI) multi\|spectral data. We derive an NPP estimation algorithm from ground measurement data on temperate plants in Japan. By the algorithm, we estimate NPP using a vegetation index based on pattern decomposition (VIPD) for the Mongolian Plateau. The VIPD is derived from Landsat ETM+ multi\|spectral data, and the resulting NPP estimation is compared with ground data measured in a semi\|arid area of Mongolia. The NPP estimation derived from satellite remote sensing data agrees with the ground measurement data within the error range of 15% when all above\|ground vegetation NPP is calculated for different vegetation classifications. 展开更多
关键词 NPP reflectance PHOTOSYNTHESIS canopy structure
下载PDF
Current and near-term advances in Earth observation for ecological applications 被引量:2
20
作者 Susan L.Ustin Elizabeth M.Middleton 《Ecological Processes》 SCIE EI 2021年第1期1-57,共57页
There is an unprecedented array of new satellite technologies with capabilities for advancing our understanding of ecological processes and the changing composition of the Earth’s biosphere at scales from local plots... There is an unprecedented array of new satellite technologies with capabilities for advancing our understanding of ecological processes and the changing composition of the Earth’s biosphere at scales from local plots to the whole planet.We identified 48 instruments and 13 platforms with multiple instruments that are of broad interest to the environmental sciences that either collected data in the 2000s,were recently launched,or are planned for launch in this decade.We have restricted our review to instruments that primarily observe terrestrial landscapes or coastal margins and are available under free and open data policies.We focused on imagers that passively measure wavelengths in the reflected solar and emitted thermal spectrum.The suite of instruments we describe measure land surface characteristics,including land cover,but provide a more detailed monitoring of ecosystems,plant communities,and even some species then possible from historic sensors.The newer instruments have potential to greatly improve our understanding of ecosystem functional relationships among plant traits like leaf mass area(LMA),total nitrogen content,and leaf area index(LAI).They provide new information on physiological processes related to photosynthesis,transpiration and respiration,and stress detection,including capabilities to measure key plant and soil biophysical properties.These include canopy and soil temperature and emissivity,chlorophyll fluorescence,and biogeochemical contents like photosynthetic pigments(e.g.,chlorophylls,carotenoids,and phycobiliproteins from cyanobacteria),water,cellulose,lignin,and nitrogen in foliar proteins.These data will enable us to quantify and characterize various soil properties such as iron content,several types of soil clays,organic matter,and other components.Most of these satellites are in low Earth orbit(LEO),but we include a few in geostationary orbit(GEO)because of their potential to measure plant physiological traits over diurnal periods,improving estimates of water and carbon budgets.We also include a few spaceborne active LiDAR and radar imagers designed for quantifying surface topography,changes in surface structure,and 3-dimensional canopy properties such as height,area,vertical profiles,and gap structure.We provide a description of each instrument and tables to summarize their characteristics.Lastly,we suggest instrument synergies that are likely to yield improved results when data are combined. 展开更多
关键词 Terrestrial ecosystems Earth Observing Satellites Ecosystem processes Physiological functions MULTISPECTRAL Hyperspectral Thermal LiDAR Radar imagers BIOCHEMISTRY Soil properties Species mapping Change detection 3D canopy structure TOPOGRAPHY
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部