Hyper spectrum remote sensing with fine spectrum information is an efficient method to estimate the verticillium wilt of cotton. The research was conducted in Xinjiang, the largest cotton plant region of China, by usi...Hyper spectrum remote sensing with fine spectrum information is an efficient method to estimate the verticillium wilt of cotton. The research was conducted in Xinjiang, the largest cotton plant region of China, by using the data which were collected both by canopy spectrum infected with verticillium wilt and severity level (SL) in the year 2005-2006. The quantitative correlation was analyzed between SL and canopy of reflectance spectrum or derivative spectrum reflectance. The results indicated that spectrum characteristics of cotton canopy infected with verticillium wilt changed regularly with the increase of SL in different periods and varieties, Spectrum reflectance increased in the visible light region (620-700 nm) with the increase of the SL, which inverted in near-infrared region and was extremely significant in the region of (780-1 300 nm). When SL attained b2 (DI = 25), cotton canopy infected with verticillium wilt was used as a watershed and diagnosed index in the beginning stages of the disease. The results also indicated that there were marked different characteristics of the first derivative spectrum in these SL, it changed significantly in the red edge ranges (680-760 nm) with different SL, i.e., red edge swing decreased, and red edge position equally moved to the blue. In this study 1 001-1 110 nm and 1 205- 1 320 nm were selected out as sensitive bands for SL of canopy. Inversion models established for estimating cotton canopy infected with verticillium wilt reached the most significant level. Finally, the different spectrum characteristics of cotton canopy infected with verticillium wilt were marked, some inversion models were established, which could estimate SL of canopy infected with verticillium wilt. The best recognized model was the first derivative spectra at (FD 731 nm- FD 1317 nm), and it might be used to forecast the position of cotton canopy infected with verticillium wilt quantitatively.展开更多
The investigation was made on the relationship of seasonal time-course canopy spectral reflectance and ratio index to total leaf nitrogen accumulation (leaf nitrogen content per unit ground area) in rice under differe...The investigation was made on the relationship of seasonal time-course canopy spectral reflectance and ratio index to total leaf nitrogen accumulation (leaf nitrogen content per unit ground area) in rice under different nitrogen treatments. The results showed there was a close correlation between the canopy spectral reflectance and total leaf nitrogen accumulation. Ratio of near infrared to green band (R810/R560) was linearly related with total leaf nitrogen accumulation. independent of nitrogen levels and development stages. Different datasets were used to test the linear regression equation, with average estimation accuracy of 91. 22%, RMSE of 1.09 and average relative error of 0. 026. Thus, the ratio index R810/R560 of canopy spectral reflectance should be useful for non-destructive monitoring and diagnosis of nitrogen status in rice plants.展开更多
The influence of major cultural practices including different nitrogen application rates, population densities, transplanting leaf ages of seedling, and water regimes on rice canopy spectral reflectance was investigat...The influence of major cultural practices including different nitrogen application rates, population densities, transplanting leaf ages of seedling, and water regimes on rice canopy spectral reflectance was investigated. Results showed that increased nitrogen rates, water regimes and population densities and decreased seedling ages could enhance reflectance at NIR (near infrared) bands and reduce reflectance at visible bands. Using reflectance of green, red and NIR band and ratio index of 810-560 nm could distinguish the different type of rice by fuzzy cluster analysis,展开更多
The influence of major cultural practices including different nitrogen application rates, population densities, transplanting leaf ages of seedling, and water regimes on rice canopy spectral reflectance was investigat...The influence of major cultural practices including different nitrogen application rates, population densities, transplanting leaf ages of seedling, and water regimes on rice canopy spectral reflectance was investigated. Results showed that increased nitrogen rates, water regimes and population densities and decreased seedling ages could enhance reflectance at NIR (near infrared) bands and reduce reflectance at visible bands. Using reflectance of green, red and NIR band and ratio index of 810-560 nm could distinguish the different type of rice by fuzzy cluster analysis,展开更多
Field experiments were conducted to examine the influence factors of cultivar, nitrogen application and irrigation on grain protein content, gluten content and grain hardness in three winter wheat cultivars under fo...Field experiments were conducted to examine the influence factors of cultivar, nitrogen application and irrigation on grain protein content, gluten content and grain hardness in three winter wheat cultivars under four levels of nitrogen and irrigation treatments. Firstly, the influence of cultivars and environment factors on grain quality were studied, the effective factors were cultivars, irrigation, fertilization, etc. Secondly, total nitrogen content around winter wheat anthesis stage was proved to be significantly correlative with grain protein content, and spectral vegetation index significantly correlated to total nitrogen content around anthesis stage were the potential indicators for grain protein content. Accumulation of total nitrogen content and its transfer to grain is the physical link to produce the final grain protein, and total nitrogen content at anthesis stage was proved to be an indicator of final grain protein content. The selected normalized photochemical reflectance index (NPRI) was proved to be able to predict grain protein content on the close correlation between the ratio of total carotenoid to chlorophyll a and total nitrogen content. The method contributes towards developing optimal procedures for predicting wheat grain quality through analysis of their canopy reflected spectrum at anthesis stage. Regression equations were established to forecast grain protein and dry gluten content by total nitrogen content at anthesis stage, so it is feasible for forecasting grain quality by establishing correlation equations between biochemical constitutes and canopy reflected spectrum.展开更多
Recent studies have demonstrated the application of vegetation indices from canopy reflectedspectrum for inversion of chlorophyll concentration. Some indices are both response tovariations of vegetation and environmen...Recent studies have demonstrated the application of vegetation indices from canopy reflectedspectrum for inversion of chlorophyll concentration. Some indices are both response tovariations of vegetation and environmental factors. Canopy chlorophyll concentration, anindicator of photosynthesis activity, is related to nitrogen concentration in green vegetationand serves as an indicator of the crop response to soil nitrogen fertilizer application. Thecombination of normalized difference vegetation index (NDVI) and photochemical reflectanceindex (PRI) can reduce the effect of leaf area index (LAI) and soil background. The canopychlorophyll inversion index (CCII) was proved to be sensitive to chlorophyll concentration andvery resistant to the other variations. This paper introduced the ratio of TCARI/OSAVI to makeaccurate predictions of winter wheat chlorophyll concentration under different cultivars. Itindicated that canopy chlorophyll concentration could be evaluated by some combined vegetationindices.展开更多
文摘Hyper spectrum remote sensing with fine spectrum information is an efficient method to estimate the verticillium wilt of cotton. The research was conducted in Xinjiang, the largest cotton plant region of China, by using the data which were collected both by canopy spectrum infected with verticillium wilt and severity level (SL) in the year 2005-2006. The quantitative correlation was analyzed between SL and canopy of reflectance spectrum or derivative spectrum reflectance. The results indicated that spectrum characteristics of cotton canopy infected with verticillium wilt changed regularly with the increase of SL in different periods and varieties, Spectrum reflectance increased in the visible light region (620-700 nm) with the increase of the SL, which inverted in near-infrared region and was extremely significant in the region of (780-1 300 nm). When SL attained b2 (DI = 25), cotton canopy infected with verticillium wilt was used as a watershed and diagnosed index in the beginning stages of the disease. The results also indicated that there were marked different characteristics of the first derivative spectrum in these SL, it changed significantly in the red edge ranges (680-760 nm) with different SL, i.e., red edge swing decreased, and red edge position equally moved to the blue. In this study 1 001-1 110 nm and 1 205- 1 320 nm were selected out as sensitive bands for SL of canopy. Inversion models established for estimating cotton canopy infected with verticillium wilt reached the most significant level. Finally, the different spectrum characteristics of cotton canopy infected with verticillium wilt were marked, some inversion models were established, which could estimate SL of canopy infected with verticillium wilt. The best recognized model was the first derivative spectra at (FD 731 nm- FD 1317 nm), and it might be used to forecast the position of cotton canopy infected with verticillium wilt quantitatively.
基金supported by the National Natural Science Fundation of China(30030090)National Major Basic Research Proiect(G2000077900).
文摘The investigation was made on the relationship of seasonal time-course canopy spectral reflectance and ratio index to total leaf nitrogen accumulation (leaf nitrogen content per unit ground area) in rice under different nitrogen treatments. The results showed there was a close correlation between the canopy spectral reflectance and total leaf nitrogen accumulation. Ratio of near infrared to green band (R810/R560) was linearly related with total leaf nitrogen accumulation. independent of nitrogen levels and development stages. Different datasets were used to test the linear regression equation, with average estimation accuracy of 91. 22%, RMSE of 1.09 and average relative error of 0. 026. Thus, the ratio index R810/R560 of canopy spectral reflectance should be useful for non-destructive monitoring and diagnosis of nitrogen status in rice plants.
文摘The influence of major cultural practices including different nitrogen application rates, population densities, transplanting leaf ages of seedling, and water regimes on rice canopy spectral reflectance was investigated. Results showed that increased nitrogen rates, water regimes and population densities and decreased seedling ages could enhance reflectance at NIR (near infrared) bands and reduce reflectance at visible bands. Using reflectance of green, red and NIR band and ratio index of 810-560 nm could distinguish the different type of rice by fuzzy cluster analysis,
文摘The influence of major cultural practices including different nitrogen application rates, population densities, transplanting leaf ages of seedling, and water regimes on rice canopy spectral reflectance was investigated. Results showed that increased nitrogen rates, water regimes and population densities and decreased seedling ages could enhance reflectance at NIR (near infrared) bands and reduce reflectance at visible bands. Using reflectance of green, red and NIR band and ratio index of 810-560 nm could distinguish the different type of rice by fuzzy cluster analysis,
基金financially supported by the Special Funds for Major State Basic Research Project,China(G20000779)the China National High Tech R&D Program(2002AA243011,2003AA209010,H020821020130).
文摘Field experiments were conducted to examine the influence factors of cultivar, nitrogen application and irrigation on grain protein content, gluten content and grain hardness in three winter wheat cultivars under four levels of nitrogen and irrigation treatments. Firstly, the influence of cultivars and environment factors on grain quality were studied, the effective factors were cultivars, irrigation, fertilization, etc. Secondly, total nitrogen content around winter wheat anthesis stage was proved to be significantly correlative with grain protein content, and spectral vegetation index significantly correlated to total nitrogen content around anthesis stage were the potential indicators for grain protein content. Accumulation of total nitrogen content and its transfer to grain is the physical link to produce the final grain protein, and total nitrogen content at anthesis stage was proved to be an indicator of final grain protein content. The selected normalized photochemical reflectance index (NPRI) was proved to be able to predict grain protein content on the close correlation between the ratio of total carotenoid to chlorophyll a and total nitrogen content. The method contributes towards developing optimal procedures for predicting wheat grain quality through analysis of their canopy reflected spectrum at anthesis stage. Regression equations were established to forecast grain protein and dry gluten content by total nitrogen content at anthesis stage, so it is feasible for forecasting grain quality by establishing correlation equations between biochemical constitutes and canopy reflected spectrum.
基金support provided for this research by the Special Funds for Major State Basic Research Project(G20000779)the 863 National Project(2002AA243011,2003AA209010 and H020821020130)
文摘Recent studies have demonstrated the application of vegetation indices from canopy reflectedspectrum for inversion of chlorophyll concentration. Some indices are both response tovariations of vegetation and environmental factors. Canopy chlorophyll concentration, anindicator of photosynthesis activity, is related to nitrogen concentration in green vegetationand serves as an indicator of the crop response to soil nitrogen fertilizer application. Thecombination of normalized difference vegetation index (NDVI) and photochemical reflectanceindex (PRI) can reduce the effect of leaf area index (LAI) and soil background. The canopychlorophyll inversion index (CCII) was proved to be sensitive to chlorophyll concentration andvery resistant to the other variations. This paper introduced the ratio of TCARI/OSAVI to makeaccurate predictions of winter wheat chlorophyll concentration under different cultivars. Itindicated that canopy chlorophyll concentration could be evaluated by some combined vegetationindices.