期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of supported angle on stability and dynamical bifurcations of cantilevered pipe conveying fluid 被引量:2
1
作者 Chunbiao GAN Shuai JING +1 位作者 Shixi YANG Hua LEI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第6期729-746,共18页
The effects of the supported angle on the stability and dynamical bifurcations of an inclined cantilevered pipe conveying fluid are investigated. First, a theoretical model of the pipe is developed through the force b... The effects of the supported angle on the stability and dynamical bifurcations of an inclined cantilevered pipe conveying fluid are investigated. First, a theoretical model of the pipe is developed through the force balance and stress-strain relationship. Second, the response surfaces, stability, and critical lines of the typical hanging system (H-S) and standing system (S-S) are discussed based on the modal analysis. Last, the bifurcation diagrams of the pipe are presented for different supported angles. It is shown that pipes will undergo a series of bifurcation processes and show rich dynamic phenomena such as buckling, Hopf bifurcation, period-doubling bifurcation, chaotic motion, and divergence motion. 展开更多
关键词 cantilevered pipe conveying fluid supported angle modal analysis responsecharacteristics dynamical bifurcation
下载PDF
Dynamical Stability of Cantilevered Pipe Conveying Fluid with Inerter-Based Dynamic Vibration Absorber 被引量:2
2
作者 Zhiyuan Liu Xin Tan +5 位作者 Xiaobo Liu Pingan Chen Ke Yi Tianzhi Yang Qiao Ni Lin Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期495-514,共20页
Cantilevered pipe conveying fluid may become unstable and flutter instability would occur when the velocity of the fluid flow in the pipe exceeds a critical value.In the present study,the theoretical model of a cantil... Cantilevered pipe conveying fluid may become unstable and flutter instability would occur when the velocity of the fluid flow in the pipe exceeds a critical value.In the present study,the theoretical model of a cantilevered fluid-conveying pipe attached by an inerter-based dynamic vibration absorber(IDVA)is proposed and the stability of this dynamical system is explored.Based on linear governing equations of the pipe and the IDVA,the effects of damping coefficient,weight,inerter,location and spring stiffness of the IDVAon the critical flow velocities of the pipe system is examined.It is shown that the stability of the pipe may be significantly affected by the IDVA.In many cases,the stability of the cantilevered pipe can be enhanced by designing the parameter values of the IDVA.By solving nonlinear governing equations of the dynamical system,the nonlinear oscillations of the pipe with IDVA for sufficiently high flow velocity beyond the critical value are determined,showing that the oscillation amplitudes of the pipe can also be suppressed to some extent with a suitable design of the IDVA. 展开更多
关键词 cantilevered pipe conveying fluid inerter-based dynamic vibration absorber dynamic vibration absorber critical flow velocity nonlinear oscillation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部