期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Selective electrochemical etching of cantilever-type SOI-MEMS devices
1
作者 Xiuchun Hao Peiling He Xin Li 《Nanotechnology and Precision Engineering》 CAS CSCD 2022年第2期21-26,共6页
It is possible to achieve selective electrochemical etching between different materials,such as p-and n-type silicon.However,achieving selective electrochemical etching on two different regions of the same p-type sili... It is possible to achieve selective electrochemical etching between different materials,such as p-and n-type silicon.However,achieving selective electrochemical etching on two different regions of the same p-type silicon material is a problem that has rarely been considered.Herein,a novel selective electrochemical etching technique for cantilever-type silicon-on-insulator(SOI)wafer-based microswitches is proposed.In this study,a p-type handle layer was selectively etched,and a p-type device layer was passivated.This was achieved using a circuit with two voltage sources:voltages of−1.2 and 0 V were applied to the handle and device layers,respectively.It was found that the proposed etching process can effectively prevent the in-use sticking of a cantilever-type switch.This is accomplished by increasing the gap between the device layer and its underlying handle layer and increasing the roughness of these layers.The technique is applicable to the fabrication of various cantilever-type SOI microelectromechanical systems,irrespective of the resistivity of the SOI wafer. 展开更多
关键词 SOI-MEMS selective electrochemical etching cantilever-type switch STICKING
下载PDF
Investigation of high-quality-factor aluminum nitride MEMS cantilever resonators
2
作者 Shuai Shi Qingrui Yang +5 位作者 Yi Yuan Haolin Li Pengfei Niu Wenlan Guo Chen Sun Wei Pang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期32-43,共12页
This paper presents the design,fabrication,and characterization of cantilever-type resonators with a novel stacked structure.Aluminum nitride is adopted as the material for both the structural layer and the piezoelect... This paper presents the design,fabrication,and characterization of cantilever-type resonators with a novel stacked structure.Aluminum nitride is adopted as the material for both the structural layer and the piezoelectric layer;this simplifies the fabrication process and improves the quality factor of the resonator.Both in-plane and out-of-planeflexural modes were investigated.The effect of the structural dimensions and electrode patterns on the resonator’s performance were also studied.Finite-element simulations and experiments examining anchor loss and thermoelastic damping,which are the main loss mechanisms affecting the quality factor of these resonators,were carried out.The optimal structural dimensions and electrode patterns of the cantilever-type resonators are presented.A quality factor of 7922 with a motional impedance of 88.52 kΩand a quality factor of 8851 with a motional impedance of 67.03 kΩwere achieved for the in-plane and out-of-planeflexural-mode resonators,respectively.The proposed resonator design will contribute to the development of high-performance devices such as accelerometers,gyroscopes,and pressure sensors. 展开更多
关键词 MEMS cantilever-type micro-resonator ALN Finite-element simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部