This paper reports a series solution of wave functions for two-dimensional scattering and diffraction of plane SH waves induced by a symmetrical V-shaped canyon with different shape ratios. A half-space with a symmetr...This paper reports a series solution of wave functions for two-dimensional scattering and diffraction of plane SH waves induced by a symmetrical V-shaped canyon with different shape ratios. A half-space with a symmetrical V-shaped canyon is divided into two sub-regions by using a circular-arc auxiliary boundary. The two sub-regions are represented by global and local cylindrical coordinate systems, respectively. In each coordinate system, the wave field satisfying the Helmholtz equation is represented by the separation of variables method, in terms of the series of both Bessel functions and Hankel functions with unknown complex coefficients. Then, the two wave fields are described in the local coordinate system using the Graf addition theorem. Finally, the unknown coefficients are sought by satisfying the continuity conditions of the auxiliary boundary. To consider the phase characteristics of the wave scattering, a parametric analysis is carried out in the time domain by assuming an incident signal of the Ricker type. Surface and subsurface transient responses demonstrate the characteristics and mechanisms of wave propagating and scattering.展开更多
Scattering and Diffraction of elastic in-plane P-and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and ...Scattering and Diffraction of elastic in-plane P-and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong-motion seismologists for over forty years. The case of out-of-plane SH waves on the same elastic canyon that is semi-circular in shape on the half-space surface is the first such problem that was solved by analytic closed form solutions over forty years ago by Trifunac. The corresponding case of in-plane P-and SV-waves on the same circular canyon is a much more complicated problem because, the in-plane P-and SV-scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by the author in the work of Lee and Liu. This paper uses the technique of Lee and Liu of defining these stress-free scattered waves to solve the problem of the scattered and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape.展开更多
The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and nea...The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.展开更多
基金National Natural Science Foundation of China Under Grant No.51278382
文摘This paper reports a series solution of wave functions for two-dimensional scattering and diffraction of plane SH waves induced by a symmetrical V-shaped canyon with different shape ratios. A half-space with a symmetrical V-shaped canyon is divided into two sub-regions by using a circular-arc auxiliary boundary. The two sub-regions are represented by global and local cylindrical coordinate systems, respectively. In each coordinate system, the wave field satisfying the Helmholtz equation is represented by the separation of variables method, in terms of the series of both Bessel functions and Hankel functions with unknown complex coefficients. Then, the two wave fields are described in the local coordinate system using the Graf addition theorem. Finally, the unknown coefficients are sought by satisfying the continuity conditions of the auxiliary boundary. To consider the phase characteristics of the wave scattering, a parametric analysis is carried out in the time domain by assuming an incident signal of the Ricker type. Surface and subsurface transient responses demonstrate the characteristics and mechanisms of wave propagating and scattering.
文摘Scattering and Diffraction of elastic in-plane P-and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong-motion seismologists for over forty years. The case of out-of-plane SH waves on the same elastic canyon that is semi-circular in shape on the half-space surface is the first such problem that was solved by analytic closed form solutions over forty years ago by Trifunac. The corresponding case of in-plane P-and SV-waves on the same circular canyon is a much more complicated problem because, the in-plane P-and SV-scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by the author in the work of Lee and Liu. This paper uses the technique of Lee and Liu of defining these stress-free scattered waves to solve the problem of the scattered and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape.
文摘The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.