三峡库区地质结构复杂,尤其是巫峡高陡岸坡发育区域,历来是滑坡灾害高发区,对三峡库区的安全运行构成威胁。为了厘清巫峡高陡峡谷区滑坡灾害发育的高精度多光谱遥感影像特征,本研究以高精度遥感影像资料为基础,以巫峡高陡峡谷区为研究对...三峡库区地质结构复杂,尤其是巫峡高陡岸坡发育区域,历来是滑坡灾害高发区,对三峡库区的安全运行构成威胁。为了厘清巫峡高陡峡谷区滑坡灾害发育的高精度多光谱遥感影像特征,本研究以高精度遥感影像资料为基础,以巫峡高陡峡谷区为研究对象,应用面对对象的分类方法对研究区的高精遥感影像进行分割和分类,结合多尺度分割和ESP(Estimation of Scale Parameter)工具确定最优分割尺度,选取典型的滑坡对象样本进行最近邻分类,探索基于高精度多光谱遥感影像的高陡峡谷区滑坡灾害识别技术方法。经试验得出高陡峡谷区基于高精度多光谱遥感影像的滑坡灾害识别的最优分割尺度为720,形状因子和紧致度为0.5,在分割基础上,进行分类和滑坡信息提取。通过对比已有滑坡灾害资料,基于遥感影像自动识别滑坡灾害技术得到的研究区滑坡灾害分布结果总体精度达到了0.8696。研究结果表明,基于高精度的遥感影像自动识别滑坡灾害技术方法能够较好地进行分割与滑坡识别,精度评价的结果比较符合实际。研究结果为巫峡高陡峡谷区滑坡灾害的识别、调查、预测和防治提供依据,对三峡库区滑坡灾害的早期识别和防灾减灾有重要意义。展开更多
The deepwater of the northwestern South China Sea is located in the central to southern parts of the Qiongdongnan Basin (QDN Basin), which is a key site for hydrocarbon exploration in recent years. In this study, th...The deepwater of the northwestern South China Sea is located in the central to southern parts of the Qiongdongnan Basin (QDN Basin), which is a key site for hydrocarbon exploration in recent years. In this study, the authors did a comprehensive analysis of gravity-magnetic data, extensive 3D seismic survey, cores and cuttings, paleontology and geochemical indexes, proposed the mechanism of natural gas origin, identified different oil and gas systems, and established the model of hydrocarbon accumulations in the deep-water region. Our basin tectonic simulation indicates that the evolution of QDN Basin was controlled by multiple-phased tectonic movements, such as Indochina-Eurasian Plate collision, Tibetan Uplift, Red River faulting and the expansion of the South China Sea which is characterized by Paleogene rifting, Neogene depression, and Eocene intensive faulting and lacustrine deposits. The drilling results show that this region is dominated by marine- terrestrial transitional and neritic-bathyal facies from the early Oligocene. The Yacheng Formation of the early Oligocene is rich in organic matter and a main gas-source rock. According to the geological-geochemical data from the latest drilling wells, Lingshui, Baodao, Changchang Sags have good hydrocarbon-generating potentials, where two plays from the Paleogene and Neogene reservoirs were developed. Those reservoirs occur in central canyon structural-lithologic trap zone, Changchang marginal trap zone and southern fault terrace of Baodao Sag. Among them, the central canyon trap zone has a great potential for exploration because the various reservoir- forming elements are well developed, i.e., good coal-measure source rocks, sufficient reservoirs from the Neogene turbidity sandstone and submarine fan, faults connecting source rock and reservoirs, effective vertical migration, late stage aggregation and favorable structural-lithological composite trapping. These study results provide an important scientific basis for hydrocarbon exploration in this region, evidenced by the recent discovery of the significant commercial LS-A gas field in the central canyon of the Lingshui Sag.展开更多
文摘三峡库区地质结构复杂,尤其是巫峡高陡岸坡发育区域,历来是滑坡灾害高发区,对三峡库区的安全运行构成威胁。为了厘清巫峡高陡峡谷区滑坡灾害发育的高精度多光谱遥感影像特征,本研究以高精度遥感影像资料为基础,以巫峡高陡峡谷区为研究对象,应用面对对象的分类方法对研究区的高精遥感影像进行分割和分类,结合多尺度分割和ESP(Estimation of Scale Parameter)工具确定最优分割尺度,选取典型的滑坡对象样本进行最近邻分类,探索基于高精度多光谱遥感影像的高陡峡谷区滑坡灾害识别技术方法。经试验得出高陡峡谷区基于高精度多光谱遥感影像的滑坡灾害识别的最优分割尺度为720,形状因子和紧致度为0.5,在分割基础上,进行分类和滑坡信息提取。通过对比已有滑坡灾害资料,基于遥感影像自动识别滑坡灾害技术得到的研究区滑坡灾害分布结果总体精度达到了0.8696。研究结果表明,基于高精度的遥感影像自动识别滑坡灾害技术方法能够较好地进行分割与滑坡识别,精度评价的结果比较符合实际。研究结果为巫峡高陡峡谷区滑坡灾害的识别、调查、预测和防治提供依据,对三峡库区滑坡灾害的早期识别和防灾减灾有重要意义。
基金China National Major Special Project under contract No.2011ZX05025-002
文摘The deepwater of the northwestern South China Sea is located in the central to southern parts of the Qiongdongnan Basin (QDN Basin), which is a key site for hydrocarbon exploration in recent years. In this study, the authors did a comprehensive analysis of gravity-magnetic data, extensive 3D seismic survey, cores and cuttings, paleontology and geochemical indexes, proposed the mechanism of natural gas origin, identified different oil and gas systems, and established the model of hydrocarbon accumulations in the deep-water region. Our basin tectonic simulation indicates that the evolution of QDN Basin was controlled by multiple-phased tectonic movements, such as Indochina-Eurasian Plate collision, Tibetan Uplift, Red River faulting and the expansion of the South China Sea which is characterized by Paleogene rifting, Neogene depression, and Eocene intensive faulting and lacustrine deposits. The drilling results show that this region is dominated by marine- terrestrial transitional and neritic-bathyal facies from the early Oligocene. The Yacheng Formation of the early Oligocene is rich in organic matter and a main gas-source rock. According to the geological-geochemical data from the latest drilling wells, Lingshui, Baodao, Changchang Sags have good hydrocarbon-generating potentials, where two plays from the Paleogene and Neogene reservoirs were developed. Those reservoirs occur in central canyon structural-lithologic trap zone, Changchang marginal trap zone and southern fault terrace of Baodao Sag. Among them, the central canyon trap zone has a great potential for exploration because the various reservoir- forming elements are well developed, i.e., good coal-measure source rocks, sufficient reservoirs from the Neogene turbidity sandstone and submarine fan, faults connecting source rock and reservoirs, effective vertical migration, late stage aggregation and favorable structural-lithological composite trapping. These study results provide an important scientific basis for hydrocarbon exploration in this region, evidenced by the recent discovery of the significant commercial LS-A gas field in the central canyon of the Lingshui Sag.