To understand the effect of regime shift in Caohai Lake in Yunnan-Guizhou Plateau,SW China from submerged macrophyte dominance to phytoplankton dominance on the specification and distribution of phosphorus and on ecol...To understand the effect of regime shift in Caohai Lake in Yunnan-Guizhou Plateau,SW China from submerged macrophyte dominance to phytoplankton dominance on the specification and distribution of phosphorus and on ecological and environmental states,changes in phosphorus specification in the sediments and water were studied.The form,composition,and distribution of phosphorus in sediment were sampled in July 2020(before regime shift)and July 2021(after regime shift)were analyzed.Results reveal that phosphorus content in sediment was lower than that those of Erhai Lake and Dianchi Lake,Yunnan,SW China,on the same plateau,and was lower than those of Taihu Lake,Chaohu Lake,and Poyang Lake in the middle-lower Changjiang(Yangtze)River Plain.Organic phosphorus(Or-P)was the main form(up to 60%),followed by inactive phosphorus(Ina-P),and the active phosphorus(Act-P),the least,which is opposite to those of Taihu Lake and Poyang Lake in the middle-lower Changjiang River Plain in the eastern China.Or-P content was high,indicating a high potential risk of phosphorous release.After the regime shift,the total phosphorus in sediment decreased from 0.87±0.13 to 0.70±0.13 g/kg.The proportion of Or-P and Act-P decreased from 68.23% to 65.32% and from 5.35% to 4.69%,respectively.In contrast,the proportion of Ina-P increased from 26.42% to 29.99%.The Moran’s I index revealed that the heterogeneity of the spatial distributions of the total phosphorus(S-TP)and Act-P in the sediments before regime shift was significant(P<0.1).However,the heterogeneity of the spatial distributions of S-TP and the various forms of phosphorus after regime shift was not significant(P>0.05).The regime shift aggravated the eutrophication of the lake,the trophic level index(TLI)increased from 48.42 to 54.49(P<0.01),and the previously mesotrophic lake became a mildly eutrophic lake.The results of this study revealed the impact of regime shift in the lake from submerged macrophyte dominance to phytoplankton dominance on the composition and spatial distribution of phosphorus in sediments and provided a basis for the restoration of eutrophicated and aquatic ecosystem degraded lakes.展开更多
[Objective]The research aimed to understand water conservation capacity of litter from different forest types in Caohai basin. [Method] Current storage amount,water holding capacity and precipitation interception abil...[Objective]The research aimed to understand water conservation capacity of litter from different forest types in Caohai basin. [Method] Current storage amount,water holding capacity and precipitation interception ability of litter from 4 types of forest were investigated and studied. [Result]The order of exist litter amount was grass slope &gt;shrub forest &gt;mixed broad leaf-conifer forest &gt;coniferous forest. The order of natural water holding capacity was mixed broad leafconifer forest &gt; coniferous forest &gt; grass slope &gt; shrub forest. The relevance between water holding capacity of litter and soaking time was in line with this formula: y = kln( x) + b. During 0-120 min of litter soaking,water holding capacity increased rapidly. After 120 min,the increasing trend remained flat until closing to the maximum water holding capacity. The relevance between water absorption rate of litter and soaking time was in line with this formula: y = a + bx-1. In the beginning of soaking,water absorption rates of litter from different woodlands showed great difference. As soaking time went by,water absorption rates of litter from different woodlands all declined sharply. During 0-120 min,declining velocity of water absorption rate was quicker. After 120 min,the declining trend tended to be slow. The maximum water holding capacity of litter presented the order of shrub forest &gt; mixed broad leafconifer forest &gt; grass slope &gt; coniferous forest. The maximum precipitation interception amount of litter presented the order of shrub forest &gt; grass slope &gt; mixed broad leafconifer forest &gt; coniferous forest. Effective impounding capacity of litter presented the order of shrub forest &gt; mixed broad leafconifer forest &gt; grass slope &gt; coniferous forest. [Conclusion]The research could provide support for the construction of water conservation forest in Caohai basin.展开更多
Background: Understanding how overwintering birds choose foraging habitats is very important for conservation management. The overwintering Black-necked Crane(Grus nigricollis) feeds on crop remains in farmlands;thus,...Background: Understanding how overwintering birds choose foraging habitats is very important for conservation management. The overwintering Black-necked Crane(Grus nigricollis) feeds on crop remains in farmlands;thus, reasonable conservation management of this type of farmland that surrounds wetlands is critical for the overwintering populations of the Black-necked Crane;however, it is not clear how the Black-necked Crane chooses the foraging land in the farmland.Methods: A thorough field positioning survey of all foraging sites in farmland areas around the Caohai Wetland and a-sampling analysis of habitat selection by the Black-necked Crane were conducted during the winters from 20162017 and 2017-2018.Results: Multiple factors contributed to the selection of foraging habitat in farmlands, i.e., food factors(crop remains and tillage methods) > human disturbance factors(distance to road and settlement) > topography factors(slope aspect), listed according to the strength of influence. Additionally, Black-necked Cranes tend to choose farmland sites where there was no machine tillage, the crop remains were > 500 g/m^2, the distance to residences ranged from 100 to 500 m, the distance to roads ranged from 50 to 100 m, and the slopes exhibited western or eastern aspects. As the winters progressed, the volume of the edible crop remains declined, and the influences of the other main factors also changed, i.e., the factors of human disturbance(distance to road and settlement) became less important, while the effect of the food factor(crop remains) was strengthened. Thus, the foraging sites near the road became more important.Conclusion: The farming area surrounding the Caohai Wetland is very important for the overwintering Black-necked Crane. Food factors and human disturbance factors are the main factors that influence the choice of feeding ground.展开更多
According to environmental data,Ecopath with Ecosim (EWE) model can quantitatively describe the energy flow in the production and consumption of function components of system by using trophodynamics,and accurately ass...According to environmental data,Ecopath with Ecosim (EWE) model can quantitatively describe the energy flow in the production and consumption of function components of system by using trophodynamics,and accurately assess the biomass and stable state of aquatic ecosystem.In the paper,the basic principle and parameters of EWE model were introduced firstly,and the relationship between Q/B (the important parameter of EWE model) and basic life indices of fish was discussed,then the current study and typical results of EWE model were analysed,finally the related parameters of EWE model in Caohai Nature Reserve were analysed.展开更多
Based on the analysis of the enrichment char- acteristics of Hg and MeHg in bird feathers from Caohai National Nature Reserve in Guizhou, the risks of Hg pol- lution to the birds from Caohai wetland have been evalu- a...Based on the analysis of the enrichment char- acteristics of Hg and MeHg in bird feathers from Caohai National Nature Reserve in Guizhou, the risks of Hg pol- lution to the birds from Caohai wetland have been evalu- ated. The total Hg content of bird feathers ranges from 40 to 5058 ng/g.vyjth an average of 924 ng/g. The content of MeHg is significantly correlated with total Hg (r = 0.68,p 〈 0.01), and the content are among 0.75 and 113 ng/g. The total Hg content in the birds feathers is significantly dependent on their feeding habits, which is mainly in accordance with the following rule: carnivorous birds 〉 omnivorous birds that are mainly carnivo- rous 〉 omnivorous birds that are mainly herbivorous. There are also differences in the Hg enrichment ability in the different parts of bird feathers, and the total Hg and MeHg content in the wing feathers are significantly higher than that in the other parts of feathers. The bioaccumula- tion coefficients of aqueous Hg and MeHg by bird feathers are 0.9 × 10︿4-112.13× 10︿4 (mean value is 20.47 ×10︿4)and 0.47 × 10︿4-70.4 × 10︿4 (mean value is 9.52 × 10︿4), respectively. Although the whole Hg level in Caohai bird feathers is not too high, the Hg content in some carnivorous birds exceeds over or approaches the abnormal threshold when birds are breeding (5μg/g), which indicates that the birds in Caohai wetland are faced with some risks of ecological Hg pollution.展开更多
In this study,the sources of potentially toxic elements(PTEs)from atmospheric deposition in the waters of Guizhou’s Caohai Lake were investigated in addition to the potential risks to human health.Moss bags were used...In this study,the sources of potentially toxic elements(PTEs)from atmospheric deposition in the waters of Guizhou’s Caohai Lake were investigated in addition to the potential risks to human health.Moss bags were used to enrich PTEs from atmospheric deposition,and eight monitoring sites that best represented geographic variation were established around Caohai Lake.Moss bags were collected and examined at every 3 months to identify spatiotemporal patterns of dry and wet atmospheric deposition of PTEs.Zn was the most abundant metal identified from deposition in Caohai(72.07%–95.94%),followed by Pb and Cd,while Hg was the least abundant(0.008%–0.354%).The contributions of wet deposition of PTEs were greater than those of dry deposition,and deposition during the heating season from December to April was greater than that between April to July.Hg was mainly derived from atmospheric dry deposition(65.38%–84.44%).Spatial distribution analysis indicated that atmospheric deposition was associated with the intensity of human activities and heating emissions.Exposure via hand-to-mouth contact accounted for over 99%of the total exposure risk although overall exposure was lower than threshold acceptable levels for carcinogenic and non-carcinogenic metals,indicating an overall lack of risk towards human health.Nevertheless,the health risk from atmospheric deposition of PTEs in Caohai Lake may be reduced by focusing on Zn,Pb,and Cd deposition in rainfall and minimizing the hazards associated with hand-to-mouth exposure to PTEs.展开更多
By analyzing current situation of the Caihai Wetland, combining with "3S" technology, theory of ecosystem health, landscape ecology theory, applying the model of Pressure–State–Response, this paper assesse...By analyzing current situation of the Caihai Wetland, combining with "3S" technology, theory of ecosystem health, landscape ecology theory, applying the model of Pressure–State–Response, this paper assessed dynamic changes of ecological frangibility of the Caohai Wetland in Guizhou in 1992, 2000 and 2013. The results showed that the wetland ecosystem had sound principal functions, but also witnessed different degrees of degradation. The ratio of basic complete ecosystem landscape area in the Caohai Wetland reduced from 70.56% in 1992 to 66.26% in 2013, and the ratio of destructed landscape area increased from 12.11% in 1992 to 13.38% in 2013.展开更多
The carbon isotopic composition of organic matter from lake sediments has been extensively used to infer variations in productivity. In this paper, based on the study of the contents and δ13C values of organic matter...The carbon isotopic composition of organic matter from lake sediments has been extensively used to infer variations in productivity. In this paper, based on the study of the contents and δ13C values of organic matter in different types of lakes, it has been found that δ13C values of organic matter have different responses to lake productivity in different lakes. As to the lakes dominated by aqutic macrophytes such as Lake Caohai, organic matter becomes enriched in 13C with increasing productivity. As to the lakes dominated by aquatic algae such as Lake Chenghai, δ13C values of organic matter decrease with increasing productivity, and the degradation of aquatic algae is the main factor leading to the decrease of δ13C values of organic matter with increasing productivity. Therefore, we should be cautious to use the carbon isotopic composition of organic matter to deduce lake productivity.展开更多
The Caohai Nature Reserve is one of the three major plateau freshwater lakes in China.Since the 1950s,human activities such as land reclamation and population relocation have greatly damaged Caohai.A rapid evaluation ...The Caohai Nature Reserve is one of the three major plateau freshwater lakes in China.Since the 1950s,human activities such as land reclamation and population relocation have greatly damaged Caohai.A rapid evaluation of the spatiotemporal evolution trend of the ecological quality of the Caohai Nature Reserve is significant for the maintenance and construction of the ecosystem in this area.The research is based on the Google Earth Engine(GEE)remote sensing cloud computing platform.Landsat TM/OLI images from May to October in five time periods:2000-2002,2004-2006,2009-2011,2014-2016,and 2019-2021 were obtained to reconstruct the optimal cloud image set by averaging the images in each time period.By constructing four ecological indicators:Greenness(NDVI),Wetness(Wet),Hotness(LST),and Dryness(NDBSI),and using Principal Component Analysis(PCA)method to obtain the Remote Sensing Ecological Index(RSEI)for the corresponding years,the spatiotemporal variation of ecological quality in the Caohai Nature Reserve over 20 years was analyzed.The results indicate:①the mean value of RSEI increased from 0.460 in 2000-2002 to 0.772 in 2019-2021,a 67.83%increase,indicating a significant improvement in the ecological quality of the reserve over the 20 years;②from the perspective of functional zoning of the Caohai Nature Reserve,the ecological quality of the core area showed a degrading trend,while the ecological quality of the buffer zone and experimental zone significantly improved;③with the implementation of ecological restoration projects,the ecological quality of the reserve gradually recovered and improved from 2014 to 2021.The trend of RSEI value changes is well correlated with human interventions,indicating that the PCA-based RSEI model can be effectively used for ecological quality assessment in lake areas.展开更多
The oxygen isotopic values of aquatic plant cellulose and carbonates in Lake Caohai sediments were measured using a continuous flow isotopic ratio mass spectrometer(CF-IRMS).Because of predictable oxygen isotopic frac...The oxygen isotopic values of aquatic plant cellulose and carbonates in Lake Caohai sediments were measured using a continuous flow isotopic ratio mass spectrometer(CF-IRMS).Because of predictable oxygen isotopic fractionation between cellulose and its source water,the oxygen isotopic composition of paleo-lake water has been established quantitatively.Combined oxygen isotopic values of cellulose and carbonates were used in the‘Craig’equation to determine paleotemperatures and their variation in the lake during the past 500 years.Results show that the paleotemperature trend correlates well with meteorological records from Weining.There are four notable cold intervals at Lake Caohai over the past 500 years,namely 1540–1570AD,1670–1715AD,1780–1870AD and 1900–1930AD,and the former three cold intervals have been observed in the conventional Little Ice Age(LIA).These cold periods at Lake Caohai correspond well with those recorded from tree ring,peat,and ice core data from adjacent regions,particularly temperature those inferred fromδ18O of peat cellulose from Hongyuan Southwestern China.The trend in paleotemperature variations at Lake Caohai are also consistent with both the change of Indian summer monsoon,derived fromδ18O values of a stalagmite in Dongge,and a recorded shift in solar activity.The findings of this study illustrate that coupled analysis ofδ18O values of cellulose and carbonates from lake sediments may be used as a paleotemperature proxy.These results also provide further evidence of the existence of LIA in southwestern China.展开更多
基金Supported by the Guizhou Province Science and Technology Plan Project(No.2021470)。
文摘To understand the effect of regime shift in Caohai Lake in Yunnan-Guizhou Plateau,SW China from submerged macrophyte dominance to phytoplankton dominance on the specification and distribution of phosphorus and on ecological and environmental states,changes in phosphorus specification in the sediments and water were studied.The form,composition,and distribution of phosphorus in sediment were sampled in July 2020(before regime shift)and July 2021(after regime shift)were analyzed.Results reveal that phosphorus content in sediment was lower than that those of Erhai Lake and Dianchi Lake,Yunnan,SW China,on the same plateau,and was lower than those of Taihu Lake,Chaohu Lake,and Poyang Lake in the middle-lower Changjiang(Yangtze)River Plain.Organic phosphorus(Or-P)was the main form(up to 60%),followed by inactive phosphorus(Ina-P),and the active phosphorus(Act-P),the least,which is opposite to those of Taihu Lake and Poyang Lake in the middle-lower Changjiang River Plain in the eastern China.Or-P content was high,indicating a high potential risk of phosphorous release.After the regime shift,the total phosphorus in sediment decreased from 0.87±0.13 to 0.70±0.13 g/kg.The proportion of Or-P and Act-P decreased from 68.23% to 65.32% and from 5.35% to 4.69%,respectively.In contrast,the proportion of Ina-P increased from 26.42% to 29.99%.The Moran’s I index revealed that the heterogeneity of the spatial distributions of the total phosphorus(S-TP)and Act-P in the sediments before regime shift was significant(P<0.1).However,the heterogeneity of the spatial distributions of S-TP and the various forms of phosphorus after regime shift was not significant(P>0.05).The regime shift aggravated the eutrophication of the lake,the trophic level index(TLI)increased from 48.42 to 54.49(P<0.01),and the previously mesotrophic lake became a mildly eutrophic lake.The results of this study revealed the impact of regime shift in the lake from submerged macrophyte dominance to phytoplankton dominance on the composition and spatial distribution of phosphorus in sediments and provided a basis for the restoration of eutrophicated and aquatic ecosystem degraded lakes.
基金Supported by National "Twelfth Five-year"Science and Technology Support Plan,China(2011BAC02B02)Graduate Innovation Fund of Guizhou University,China
文摘[Objective]The research aimed to understand water conservation capacity of litter from different forest types in Caohai basin. [Method] Current storage amount,water holding capacity and precipitation interception ability of litter from 4 types of forest were investigated and studied. [Result]The order of exist litter amount was grass slope &gt;shrub forest &gt;mixed broad leaf-conifer forest &gt;coniferous forest. The order of natural water holding capacity was mixed broad leafconifer forest &gt; coniferous forest &gt; grass slope &gt; shrub forest. The relevance between water holding capacity of litter and soaking time was in line with this formula: y = kln( x) + b. During 0-120 min of litter soaking,water holding capacity increased rapidly. After 120 min,the increasing trend remained flat until closing to the maximum water holding capacity. The relevance between water absorption rate of litter and soaking time was in line with this formula: y = a + bx-1. In the beginning of soaking,water absorption rates of litter from different woodlands showed great difference. As soaking time went by,water absorption rates of litter from different woodlands all declined sharply. During 0-120 min,declining velocity of water absorption rate was quicker. After 120 min,the declining trend tended to be slow. The maximum water holding capacity of litter presented the order of shrub forest &gt; mixed broad leafconifer forest &gt; grass slope &gt; coniferous forest. The maximum precipitation interception amount of litter presented the order of shrub forest &gt; grass slope &gt; mixed broad leafconifer forest &gt; coniferous forest. Effective impounding capacity of litter presented the order of shrub forest &gt; mixed broad leafconifer forest &gt; grass slope &gt; coniferous forest. [Conclusion]The research could provide support for the construction of water conservation forest in Caohai basin.
基金following projects:National Natural Science Foundation of China(NSFC)(31860610,31400353)Provincial Key Science and Technology Project of Guizhou([2016]3022-1)+3 种基金Provincial Science and Technology Plan of Guizhou([2014]7682[2019]1068)Science and Technology Plan of Education Administration of Guizhou Province([2018]102[2015]354).
文摘Background: Understanding how overwintering birds choose foraging habitats is very important for conservation management. The overwintering Black-necked Crane(Grus nigricollis) feeds on crop remains in farmlands;thus, reasonable conservation management of this type of farmland that surrounds wetlands is critical for the overwintering populations of the Black-necked Crane;however, it is not clear how the Black-necked Crane chooses the foraging land in the farmland.Methods: A thorough field positioning survey of all foraging sites in farmland areas around the Caohai Wetland and a-sampling analysis of habitat selection by the Black-necked Crane were conducted during the winters from 20162017 and 2017-2018.Results: Multiple factors contributed to the selection of foraging habitat in farmlands, i.e., food factors(crop remains and tillage methods) > human disturbance factors(distance to road and settlement) > topography factors(slope aspect), listed according to the strength of influence. Additionally, Black-necked Cranes tend to choose farmland sites where there was no machine tillage, the crop remains were > 500 g/m^2, the distance to residences ranged from 100 to 500 m, the distance to roads ranged from 50 to 100 m, and the slopes exhibited western or eastern aspects. As the winters progressed, the volume of the edible crop remains declined, and the influences of the other main factors also changed, i.e., the factors of human disturbance(distance to road and settlement) became less important, while the effect of the food factor(crop remains) was strengthened. Thus, the foraging sites near the road became more important.Conclusion: The farming area surrounding the Caohai Wetland is very important for the overwintering Black-necked Crane. Food factors and human disturbance factors are the main factors that influence the choice of feeding ground.
基金Supported by Natural Science Foundation of Bijie University in Guizhou Province ( 20102018)
文摘According to environmental data,Ecopath with Ecosim (EWE) model can quantitatively describe the energy flow in the production and consumption of function components of system by using trophodynamics,and accurately assess the biomass and stable state of aquatic ecosystem.In the paper,the basic principle and parameters of EWE model were introduced firstly,and the relationship between Q/B (the important parameter of EWE model) and basic life indices of fish was discussed,then the current study and typical results of EWE model were analysed,finally the related parameters of EWE model in Caohai Nature Reserve were analysed.
基金supported by the National Natural Science Foundation of China (No. 41363007)
文摘Based on the analysis of the enrichment char- acteristics of Hg and MeHg in bird feathers from Caohai National Nature Reserve in Guizhou, the risks of Hg pol- lution to the birds from Caohai wetland have been evalu- ated. The total Hg content of bird feathers ranges from 40 to 5058 ng/g.vyjth an average of 924 ng/g. The content of MeHg is significantly correlated with total Hg (r = 0.68,p 〈 0.01), and the content are among 0.75 and 113 ng/g. The total Hg content in the birds feathers is significantly dependent on their feeding habits, which is mainly in accordance with the following rule: carnivorous birds 〉 omnivorous birds that are mainly carnivo- rous 〉 omnivorous birds that are mainly herbivorous. There are also differences in the Hg enrichment ability in the different parts of bird feathers, and the total Hg and MeHg content in the wing feathers are significantly higher than that in the other parts of feathers. The bioaccumula- tion coefficients of aqueous Hg and MeHg by bird feathers are 0.9 × 10︿4-112.13× 10︿4 (mean value is 20.47 ×10︿4)and 0.47 × 10︿4-70.4 × 10︿4 (mean value is 9.52 × 10︿4), respectively. Although the whole Hg level in Caohai bird feathers is not too high, the Hg content in some carnivorous birds exceeds over or approaches the abnormal threshold when birds are breeding (5μg/g), which indicates that the birds in Caohai wetland are faced with some risks of ecological Hg pollution.
基金supported by the National Natural Science Foundation of China(21767006)The Science and Technology of Guizhou Province,China([2018]2349)。
文摘In this study,the sources of potentially toxic elements(PTEs)from atmospheric deposition in the waters of Guizhou’s Caohai Lake were investigated in addition to the potential risks to human health.Moss bags were used to enrich PTEs from atmospheric deposition,and eight monitoring sites that best represented geographic variation were established around Caohai Lake.Moss bags were collected and examined at every 3 months to identify spatiotemporal patterns of dry and wet atmospheric deposition of PTEs.Zn was the most abundant metal identified from deposition in Caohai(72.07%–95.94%),followed by Pb and Cd,while Hg was the least abundant(0.008%–0.354%).The contributions of wet deposition of PTEs were greater than those of dry deposition,and deposition during the heating season from December to April was greater than that between April to July.Hg was mainly derived from atmospheric dry deposition(65.38%–84.44%).Spatial distribution analysis indicated that atmospheric deposition was associated with the intensity of human activities and heating emissions.Exposure via hand-to-mouth contact accounted for over 99%of the total exposure risk although overall exposure was lower than threshold acceptable levels for carcinogenic and non-carcinogenic metals,indicating an overall lack of risk towards human health.Nevertheless,the health risk from atmospheric deposition of PTEs in Caohai Lake may be reduced by focusing on Zn,Pb,and Cd deposition in rainfall and minimizing the hazards associated with hand-to-mouth exposure to PTEs.
基金Sponsored by National Natural Science Foundation of China(41161002)Guizhou Province Governor Foundation(2011No.46)Guizhou Project of Ministry of Environmental Protection"RS Survey and Assessment of the Decadal Change of Ecological Environment"
文摘By analyzing current situation of the Caihai Wetland, combining with "3S" technology, theory of ecosystem health, landscape ecology theory, applying the model of Pressure–State–Response, this paper assessed dynamic changes of ecological frangibility of the Caohai Wetland in Guizhou in 1992, 2000 and 2013. The results showed that the wetland ecosystem had sound principal functions, but also witnessed different degrees of degradation. The ratio of basic complete ecosystem landscape area in the Caohai Wetland reduced from 70.56% in 1992 to 66.26% in 2013, and the ratio of destructed landscape area increased from 12.11% in 1992 to 13.38% in 2013.
基金supported by the National Basic Research Program of China (Grant No. 2006CB403201)the National Natural Science Foundation of China (Grant No. 40673068)
文摘The carbon isotopic composition of organic matter from lake sediments has been extensively used to infer variations in productivity. In this paper, based on the study of the contents and δ13C values of organic matter in different types of lakes, it has been found that δ13C values of organic matter have different responses to lake productivity in different lakes. As to the lakes dominated by aqutic macrophytes such as Lake Caohai, organic matter becomes enriched in 13C with increasing productivity. As to the lakes dominated by aquatic algae such as Lake Chenghai, δ13C values of organic matter decrease with increasing productivity, and the degradation of aquatic algae is the main factor leading to the decrease of δ13C values of organic matter with increasing productivity. Therefore, we should be cautious to use the carbon isotopic composition of organic matter to deduce lake productivity.
基金Supported by Joint Project between Bijie Science and Technology Bureau and Guizhou University of Engineering Science (Bike Lianhe Zi (Guigongcheng)[2021]03)Guizhou Provincial Key Technology R&D Program (Qiankehe[2023]General 211).
文摘The Caohai Nature Reserve is one of the three major plateau freshwater lakes in China.Since the 1950s,human activities such as land reclamation and population relocation have greatly damaged Caohai.A rapid evaluation of the spatiotemporal evolution trend of the ecological quality of the Caohai Nature Reserve is significant for the maintenance and construction of the ecosystem in this area.The research is based on the Google Earth Engine(GEE)remote sensing cloud computing platform.Landsat TM/OLI images from May to October in five time periods:2000-2002,2004-2006,2009-2011,2014-2016,and 2019-2021 were obtained to reconstruct the optimal cloud image set by averaging the images in each time period.By constructing four ecological indicators:Greenness(NDVI),Wetness(Wet),Hotness(LST),and Dryness(NDBSI),and using Principal Component Analysis(PCA)method to obtain the Remote Sensing Ecological Index(RSEI)for the corresponding years,the spatiotemporal variation of ecological quality in the Caohai Nature Reserve over 20 years was analyzed.The results indicate:①the mean value of RSEI increased from 0.460 in 2000-2002 to 0.772 in 2019-2021,a 67.83%increase,indicating a significant improvement in the ecological quality of the reserve over the 20 years;②from the perspective of functional zoning of the Caohai Nature Reserve,the ecological quality of the core area showed a degrading trend,while the ecological quality of the buffer zone and experimental zone significantly improved;③with the implementation of ecological restoration projects,the ecological quality of the reserve gradually recovered and improved from 2014 to 2021.The trend of RSEI value changes is well correlated with human interventions,indicating that the PCA-based RSEI model can be effectively used for ecological quality assessment in lake areas.
基金supported by the National Natural Science Foundation of China(Grant No.40673068)the National Science and Technology Support Program of China(Grant No.2011BAC02B0201)the Natural Science Foundation of Guizhou Province,China
文摘The oxygen isotopic values of aquatic plant cellulose and carbonates in Lake Caohai sediments were measured using a continuous flow isotopic ratio mass spectrometer(CF-IRMS).Because of predictable oxygen isotopic fractionation between cellulose and its source water,the oxygen isotopic composition of paleo-lake water has been established quantitatively.Combined oxygen isotopic values of cellulose and carbonates were used in the‘Craig’equation to determine paleotemperatures and their variation in the lake during the past 500 years.Results show that the paleotemperature trend correlates well with meteorological records from Weining.There are four notable cold intervals at Lake Caohai over the past 500 years,namely 1540–1570AD,1670–1715AD,1780–1870AD and 1900–1930AD,and the former three cold intervals have been observed in the conventional Little Ice Age(LIA).These cold periods at Lake Caohai correspond well with those recorded from tree ring,peat,and ice core data from adjacent regions,particularly temperature those inferred fromδ18O of peat cellulose from Hongyuan Southwestern China.The trend in paleotemperature variations at Lake Caohai are also consistent with both the change of Indian summer monsoon,derived fromδ18O values of a stalagmite in Dongge,and a recorded shift in solar activity.The findings of this study illustrate that coupled analysis ofδ18O values of cellulose and carbonates from lake sediments may be used as a paleotemperature proxy.These results also provide further evidence of the existence of LIA in southwestern China.