期刊文献+
共找到1,611篇文章
< 1 2 81 >
每页显示 20 50 100
Optimal Multi-Timescale Scheduling of Integrated Energy Systems with Hybrid Energy Storage System Based on Lyapunov Optimization
1
作者 Yehui Ma Dong Han Zhuoxin Lu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期465-480,共16页
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th... The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES. 展开更多
关键词 integrated energy systems multiple time scales hybrid energy storage systems Lya-punov optimization
下载PDF
Modeling and Simulation of a Hybrid Energy Storage System for Residential Grid-Tied Solar Microgrid Systems
2
作者 Abdrahamane Traore Allan Taylor +1 位作者 M. A. Zohdy F. Z. Peng 《Journal of Power and Energy Engineering》 2017年第5期28-39,共12页
Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized wit... Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized within their specific topology (e.g. MPPT for solar applications and BMS for batteries), the topologies are not easily adapted to accept a wide range of power flow operating conditions. With a hybrid approach to energy storage and power flow, a system can be designed to operate at its most advantageous point, given the operating conditions. Based on the load demand, the system can select the optimal power source and ESS. This paper will investigate the feasibility of combining two types of power sources (main utility grid and photovoltaics (PV)) along with two types of ESS (ultra-capacitors and batteries). The simulation results will show the impact of a hybrid ESS on a grid-tied residential microgrid system performance under various operating scenarios. 展开更多
关键词 Microgrid SOLAR hybrid energy storage systems Grid-Tied RENEWABLE energy System Modeling Batteries
下载PDF
Analysis of Hybrid Rechargeable Energy Storage Systems in Series Plug-In Hybrid Electric Vehicles Based on Simulations
3
作者 Karel Fleurbaey Noshin Omar +2 位作者 Mohamed El Baghdadi Jean-Marc Timmermans Joeri Van Mierlo 《Energy and Power Engineering》 2014年第8期195-211,共17页
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba... In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system. 展开更多
关键词 Plug-In hybrid Electric Vehicle hybrid energy storage System HIGH energy BATTERY HIGH Power BATTERY Electrical DOUBLE-LAYER CAPACITOR Lithium-Ion CAPACITOR
下载PDF
Research on energy storage capacity configuration for PV power plants using uncertainty analysis and its applications 被引量:7
4
作者 Honglu Zhu Ruyin Hou +1 位作者 Tingting Jiang Qingquan Lv 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期608-618,共11页
Compensating for photovoltaic(PV)power forecast errors is an important function of energy storage systems.As PV power outputs have strong random fluctuations and uncertainty,it is difficult to satisfy the grid-connect... Compensating for photovoltaic(PV)power forecast errors is an important function of energy storage systems.As PV power outputs have strong random fluctuations and uncertainty,it is difficult to satisfy the grid-connection requirements using fixed energy storage capacity configuration methods.In this paper,a method of configuring energy storage capacity is proposed based on the uncertainty of PV power generation.A k-means clustering algorithm is used to classify weather types based on differences in solar irradiance.The power forecast errors in different weather types are analyzed,and an energy storage system is used to compensate for the errors.The kernel density estimation is used to fit the distributions of the daily maximum power and maximum capacity requirements of the energy storage system;the power and capacity of the energy storage unit are calculated at different confidence levels.The optimized energy storage configuration of a PV plant is presented according to the calculated degrees of power and capacity satisfaction.The proposed method was validated using actual operating data from a PV power station.The results indicated that the required energy storage can be significantly reduced while compensating for power forecast errors. 展开更多
关键词 PV power Weather classification Error analysis Kernel density estimation energy storage capacity configuration
下载PDF
Double-Layer-Optimizing Method of Hybrid Energy Storage Microgrid Based on Improved Grey Wolf Optimization 被引量:2
5
作者 Xianjing Zhong Xianbo Sun Yuhan Wu 《Computers, Materials & Continua》 SCIE EI 2023年第8期1599-1619,共21页
To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing confi... To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost. 展开更多
关键词 Wind-solar microgrid hybrid energy storage optimization configuration double-layer optimization model IGWO
下载PDF
Towards Implementation of Smart Grid: An Updated Review on Electrical Energy Storage Systems 被引量:2
6
作者 Md Multan Biswas Md Shafiul Azim +2 位作者 Tonmoy Kumar Saha Umama Zobayer Monalisa Chowdhury Urmi 《Smart Grid and Renewable Energy》 2013年第1期122-132,共11页
A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been... A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been described as something of an ecosystem with constantly communication, proactive, and virtually self-aware. The use of smart grid has a lot of economical and environmental advantages;however it has a downside of instability and unpredictability introduced by distributed generation (DG) from renewable energy into the public electric systems. Variable energies such as solar and wind power have a lack of stability and to avoid short-term fluctuations in power supplied to the grid, a local storage subsystem could be used to provide higher quality and stability in the fed energy. Energy storage systems (ESSs) would be a facilitator of smart grid deployment and a “small amount” of storage would have a “great impact” on the future power grid. The smart grid, with its various superior communications and control features, would make it possible to integrate the potential application of widely dispersed battery storage systems as well other ESSs. This work deals with a detailed updated review on available ESSs applications in future smart power grids. It also highlights latest projects carried out on different ESSs throughout all around the world. 展开更多
关键词 BATTERY Distributed Generation hybrid energy storage systems Power QUALITY SMART GRID
下载PDF
Capacity Worth of Energy Storage System in Renewable Power Generation Plant
7
作者 Jinbin Li Yao Yao 《Engineering(科研)》 2013年第9期1-5,共5页
With the advance in renewable generation technologies, the cost of renewable energy becomes increasingly competitive when compared to fossil fuel-based generation resources. It is economically beneficial to integrate ... With the advance in renewable generation technologies, the cost of renewable energy becomes increasingly competitive when compared to fossil fuel-based generation resources. It is economically beneficial to integrate large amounts of renewable capacity in power systems. Unlike traditional generation facilities, however, using renewable resources for generation presents technical challenges in producing continuous power. In this report, an Energy Storage System (ESS) is integrated to smooth the variations in renewable power production and ensure the output power more controllable. Since it requires capital investment for the storage devices, it is important to obtain reasonable estimate of the storage capacities. This project is therefore formulated as an optimization problem in determining the two dominating factors of the capital cost for the ESS: the power capacity and the energy capacity. The objective is to make the renewable power more reliable and simultaneously maximize the economic benefits that can be obtained from the scheme. To make the results more convincing, analyses in this report start with wind generation, for wind has greater variability and unpredictability than other renewable sources. Selection of ESS type is narrowed down to battery energy storage system (BESS) in the scheme. However, the methods presented here are suitable for any type of energy storage methods and are also useful for intermittent renewable energy resources other than wind. 展开更多
关键词 WIND POWER energy storage System POWER capacity energy capacity
下载PDF
Modeling and Capacity Configuration Optimization of CRH5 EMU On-Board Energy Storage System
8
作者 Mingxing Tian Weiyuan Zhang Zhaoxu Su 《Energy Engineering》 EI 2025年第1期307-329,共23页
In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways Hi... In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train. 展开更多
关键词 Electrified railway regenerative braking bi-level programming on-board energy storage power quality capacity configuration
下载PDF
The Full Load Voltage Compensation Strategy in Capacity Configuration of UPQC Integrated PV-BESS
9
作者 Fuyin Ni Kai Li 《Energy Engineering》 EI 2023年第5期1203-1221,共19页
Unified power quality conditioner(UPQC)with energy storage is commonly based on conventional capacity configuration strategy with power angle control.It has problems such as phase jumping before and after compensation... Unified power quality conditioner(UPQC)with energy storage is commonly based on conventional capacity configuration strategy with power angle control.It has problems such as phase jumping before and after compensation.DC-link cannot continuously emit active power externally.Therefore,this paper presents the compensation strategy of full load voltage magnitude and phase in capacity configuration of UPQC.The topology of UPQC is integrated a series active power filter(SAPF),a shunt active power filter(PAPF)and a photovoltaic-battery energy storage system(PV-BESS).The principle of full load voltage compensation is analyzed based on the PV-BESS-UPQC topology.Themagnitude constant of load voltage ismaintained by controlling the appropriate shunt compensation current.Then the UPQC capacity configuration is carried out using the full load voltage compensation strategy.The compensation capacity of UPQC series and shunt units are reduced.Finally,the simulation results show that the proposed compensation strategy reduces the capacity configuration by 5.11 kVA(36.4%)compared to the conventional compensation strategy.The proposed strategy can achieve full compensation of the load voltage,which can effectively reduce the capacity allocation and improve the economy of UPQC.It also has the PV-BESS units’ability of providing active power and can stabilize the DC-link voltage. 展开更多
关键词 Unified power quality conditioner solar photovoltaic battery energy storage system full compensation capacity configuration strategy
下载PDF
Generation of typical operation curves for hydrogen storage applied to the wind power fluctuation smoothing mode 被引量:8
10
作者 Yanhui Xu Yijia Xu Yan Huang 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期353-361,共9页
In this paper,a typical-operation-curve generation method of a hydrogen energy storage system operating under the mode of stabilizing wind power fluctuations is proposed.This method is used to optimize the power and c... In this paper,a typical-operation-curve generation method of a hydrogen energy storage system operating under the mode of stabilizing wind power fluctuations is proposed.This method is used to optimize the power and capacity configuration of the energy storage system.The time series curves of the charging and discharging powers of the hydrogen energy storage are obtained by EMD decomposition,and the curves are classified according to the similarities and differences of the characteristic parameters in different time periods.After the classification,typical charging and discharging power values of each type of curve at each moment are obtained by a cloud model,and then,typical operation curves of each type are obtained by integration.On this basis,the power and capacity of the energy storage system are optimized with the objective of economic optimization through the MATLAB CPLEX toolbox.Combined with the measured data of a wind farm with an installed capacity of 400 MW in Northeast China,the validity and rationality of the typical operation curve generation method proposed in this paper are verified. 展开更多
关键词 Wind farm Hydrogen energy storage system Cluster analysis Typical operation curves capacity configuration
下载PDF
Optimal Sizing of Solar/Wind Hybrid Off-Grid Microgrids Using an Enhanced Genetic Algorithm 被引量:2
11
作者 Abdrahamane Traoré Hatem Elgothamy Mohamed A. Zohdy 《Journal of Power and Energy Engineering》 2018年第5期64-77,共14页
This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e... This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods. 展开更多
关键词 Optimization ofF-GRID Microgrid Renewable energy energy storage systems (ESS) SOLAR Photovoltaic (PV) WIND Battery hybrid Genetic Algorithm (GA)
下载PDF
Realization and Analysis of Good Fuel Economy and Kinetic Performance of a Low-cost Hybrid Electric Vehicle 被引量:7
12
作者 WANG Lei ZHANG Jianlong YIN Chengliang ZHANG Yong WU Zhiwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期774-789,共16页
By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hind... By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs. 展开更多
关键词 low-cost hybrid electric vehicle hybrid energy storage system(HESS) fuel economy kinetic performance co-simulation cost and performance tradeoff
下载PDF
Supercharging of Diesel Engine with Compressed Air: Experimental Investigation on Greenhouse Gases and Performance for a Hybrid Wind-Diesel System
13
作者 Hussein Ibrahim Mohamad Issa +2 位作者 Richard Lepage Adrian Ilinca Jean Perron 《Smart Grid and Renewable Energy》 2019年第9期213-236,共24页
Supercharging is the process of supplying air for combustion at a pressure greater than that achieved by natural or atmospheric induction, as applied to internal combustion engines. As a consequence of demonstrated te... Supercharging is the process of supplying air for combustion at a pressure greater than that achieved by natural or atmospheric induction, as applied to internal combustion engines. As a consequence of demonstrated technological, economical and energetic advantages in multiple literature evaluations concerning the large scale wind-compressed air hybrid storage system with gas turbines, the utilization of a hybrid wind-diesel system with compressed air storage (HWDCAS) has been frequently explored. These will mainly have average or small scale application such as the powering of isolated sites. It has been proven in numerous studies that the HWDCAS combined with an additional supercharging of the diesel engines will contribute to the increase of the power and efficiency of the diesel engine, the reduction of both fuel consumption and the emission of greenhouse gases (GHG). This article presents the obtained results from experimental validation of the selected design with an aim to valorize this innovative solution and become trustworthy. 展开更多
关键词 WIND energy DIESEL Generator Compressed Air energy storage Supercharging hybrid systems Optimization
下载PDF
Modelling and Optimal Design of Hybrid Power System Photovoltaic/Solid Oxide Fuel Cell for a Mediterranean City
14
作者 Bachir Melzi Nesrine Kefif +2 位作者 Mamdouh El Haj Assad Haleh Delnava Abdulkadir Hamid 《Energy Engineering》 EI 2021年第6期1767-1781,共15页
This work presents a hybrid power system consisting of photovoltaic and solid oxide fuel cell(PV-SOFC)for electricity production and hydrogen production.The simulation of this hybrid system is adjusted for Bou-Zedjar ... This work presents a hybrid power system consisting of photovoltaic and solid oxide fuel cell(PV-SOFC)for electricity production and hydrogen production.The simulation of this hybrid system is adjusted for Bou-Zedjar city in north Algeria.Homer software was used for this simulation to calculate the power output and the total net present cost.The method used depends on the annual average monthly values of clearness index and radiation for which the energy contributions are determined for each component of PV/SOFC hybrid system.The economic study is more important criterion in the proposed hybrid system,and the results show that the cost is very suitable for the use of this hybrid system,which ensures that the area is fed continuously with the sufficient energy for the load which assumed to be 500 kW in the peak season.The optimized results of the present study show that the photovoltaic is capable of generating 8733 kW electricity while the SOFC produces 500 kW electricity.The electrolyzer is capable of producing 238750 kg of hydrogen which is used as fuel in the SOFC to compensate the energy lack in nights and during peak season. 展开更多
关键词 energy storage PV/SofC hybrid systems hydrogen production energy and economic optimization
下载PDF
Simulation of District Cooling Plant and Efficient Energy Air Cooled Condensers (Part I) 被引量:1
15
作者 Mousa M. Mohamed Mohammed Hueesin Almarshadi 《Journal of Electronics Cooling and Thermal Control》 2017年第3期45-62,共18页
In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of r... In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of residential buildings and Model B of schools and hospitals were used to estimate the daily cooling load profile in Makkah, Saudi Arabia at latitude of 21.42&deg;N and longitude of 39.83&deg;E. Model A was constructed from common materials, but Model B as Model A with 5 - 8 cm thermal insulation and double layers glass windows. The average data of Makkah weather through 2010, 2011 and 2012 were used to calculate the cooling load profile and performance of air conditioning systems. The maximum cooling load was calculated at 15:00 o’clock for a main floor building to a 40-floor of residential building and to 5 floors of schools. A district cooling plant of 180,000 Refrigeration Ton was suggested to serve the Gabal Al Sharashf area in the central zone of Makkah. A thermal storage system to store the excess cooling capacity was used. Air cooled condensers were used in the analysis of chiller refrigeration cycle. The operating cost was mainly a function of electrical energy consumption. Fixed electricity tariff was 0.04 $/kWh for electromechanical counter, and 0.027, 0.04, 0.069 $/kWh for shifting loads peak for the smart digital counter. The results showed that the daily savings in consumed power are 8.27% in spring, 6.86% in summer, 8.81% in autumn, and 14.55% in winter. Also, the daily savings in electricity bills are 12.26% in spring, 16.66% in summer, 12.84% in autumn, and 14.55% in winter. The obtained maximum saving in consumed power is 14.5% and the daily saving in electricity bills is 43% in summer when the loads peak is completely shifted to off-peak period. 展开更多
关键词 DISTRICT COOLING Thermal storage System COOLING Load Profile REFRIGERATION capacity SHIFTING Loadspeak SAVING in ELECTRICITY Bills SAVING Power Efficient energy
下载PDF
基于EnergyPlus和Jeplus+EA联合模拟的建筑围护结构及光储系统协同优化研究
16
作者 邵兆楠 高岩 《西安建筑科技大学学报(自然科学版)》 北大核心 2024年第2期292-300,共9页
建筑本体和可再生能源系统的协同作用对于降低建筑碳排放具有重要意义.以北京某办公建筑为例,基于NSGA-Ⅱ的优化算法,以运行阶段碳排放和生命周期成本为目标函数,以热舒适为约束条件,利用EnergyPlus和Jeplus+EA软件进行联合仿真,开展建... 建筑本体和可再生能源系统的协同作用对于降低建筑碳排放具有重要意义.以北京某办公建筑为例,基于NSGA-Ⅱ的优化算法,以运行阶段碳排放和生命周期成本为目标函数,以热舒适为约束条件,利用EnergyPlus和Jeplus+EA软件进行联合仿真,开展建筑围护结构和光储系统的协同优化研究.结果表明:配置光储系统可较大程度降低建筑电网购电量及运行阶段碳排放,虽然生命周期成本会略有增加,但其减碳效果,大于单纯依靠围护结构性能提升的传统做法;尽可能利用建筑空间配置光伏对减少碳排放及生命周期成本都是有利的;通过软件联合模拟可实现建筑围护结构和光储系统的协同优化,且较于各自独立优化,能取得更好的设计方案. 展开更多
关键词 Jeplus+EA 围护结构 光储系统 联合模拟 协同优化
下载PDF
Study of Technical and Economical Sensitivity in Stand Alone Systems in a Rural Community
17
作者 Lastres Orlando Pathiyamattom Sebastian +4 位作者 Geovanni Hernandez Galvez Juantorena Alina Nfifies Airel Dorrego Jose Rafael Sainchez Rafael 《材料科学与工程(中英文版)》 2010年第9期59-65,共7页
关键词 敏感性分析 独立系统 农村社区 经济 技术 研究站 可再生能源 传统能源
下载PDF
Hybrid Power System Options for Off-Grid Rural Electrification in Northern Kenya
18
作者 June M. Lukuyu Judith B. Cardell 《Smart Grid and Renewable Energy》 2014年第5期89-106,共18页
For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emis... For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emissions, which adversely affect the environment and increase diesel fuel prices, which inflate the prices of consumer goods. The Kenya government has taken steps towards addressing this issue by proposing The Hybrid Mini-Grid Project, which involves the installation of 3 MW of wind and solar energy systems in facilities with existing diesel generators. However, this project has not yet been implemented. As a contribution to this effort, this study proposes, simulates and analyzes five different configurations of hybrid energy systems incorporating wind energy, solar energy and battery storage to replace the stand-alone diesel power systems servicing six remote villages in northern Kenya. If implemented, the systems proposed here would reduce Kenya’s dependency on diesel fuel, leading to reductions in its carbon footprint. This analysis confirms the feasibility of these hybrid systems with many configurations being profitable. A Multi-Attribute Trade-Off Analysis is employed to determine the best hybrid system configuration option that would reduce diesel fuel consumption and jointly minimize CO2 emissions and net present cost. This analysis determined that a wind-diesel-battery configuration consisting of two 500 kW turbines, 1200 kW diesel capacity and 95,040 Ah battery capacity is the best option to replace a 3200 kW stand-alone diesel system providing electricity to a village with a peak demand of 839 kW. It has the potential to reduce diesel fuel consumption and CO2 emissions by up to 98.8%. 展开更多
关键词 hybrid POWER SYSTEM ofF-GRID POWER SYSTEM Wind energy Solar energy Battery storage MULTI-ATTRIBUTE Trade-off Analysis
下载PDF
基于熵权-TOPSIS法的风光柴储互补发电系统容量优化配置
19
作者 高建强 张浩 危日光 《动力工程学报》 北大核心 2025年第2期300-306,共7页
以某地区风光柴储互补发电系统为研究对象,将系统总成本和负荷缺电率作为优化目标,建立容量优化配置模型。采用多目标灰狼算法(MOGWO)对模型进行优化,将优化结果与多目标粒子群算法(MOPSO)的优化结果进行对比。同时,采用熵权-优劣解距离... 以某地区风光柴储互补发电系统为研究对象,将系统总成本和负荷缺电率作为优化目标,建立容量优化配置模型。采用多目标灰狼算法(MOGWO)对模型进行优化,将优化结果与多目标粒子群算法(MOPSO)的优化结果进行对比。同时,采用熵权-优劣解距离(TOPSIS)多目标决策法对优化解集进行筛选,降低了主观因素对权重系数的影响,增强了最优方案的合理性。结果表明:与MOPSO相比,MOGWO优化精度更高;在算例分析中,系统最优配置方案为风力发电机37台,光伏电池836块,柴油发电机5台,蓄电池531块,系统总成本116.904万元。 展开更多
关键词 风光柴储互补发电系统 容量配置 熵权-TOPSIS法 多目标灰狼算法
下载PDF
基于卧式抽蓄的多能互补系统容量配置优化研究
20
作者 谢建恒 王浩 +5 位作者 任岩 王超 张云辉 王美敬 孙克涛 邹汶航 《华北水利水电大学学报(自然科学版)》 北大核心 2025年第1期10-19,共10页
为提升传统水电的调节能力,扩大新能源的接入规模,可对常规水电站进行改造并增建泵站,以实现蓄能与发电的双重功能。构建基于卧式抽蓄的水电融合改造及风光水储多能互补系统,有助于实现对电网的调峰填谷,提高电网对新能源的消纳能力,保... 为提升传统水电的调节能力,扩大新能源的接入规模,可对常规水电站进行改造并增建泵站,以实现蓄能与发电的双重功能。构建基于卧式抽蓄的水电融合改造及风光水储多能互补系统,有助于实现对电网的调峰填谷,提高电网对新能源的消纳能力,保证风光等清洁能源进一步提质增效。通过对风电、光伏、水电和卧式抽蓄等发电子系统建立数学模型,设立目标函数与约束条件,利用优化算法对模型进行求解,得到风光互补出力与径流水电、垃圾发电和负荷特性规律,最后引入综合电费率计算互补基地的经济效益。分析结果显示,对第二级水电改造为卧式抽蓄后,丰水年的最优容量配置结果为风电645 MW、光伏1081 MW,互补基地的功率偏差减小至0.5320 MW/h,电力供应总成本降低至4.3621亿元,电网2相连时电费率降低至0.0284元/(kW·h),经济效益大幅提高。基于卧式抽蓄建立的多能互补容量配置优化模型,可进一步提高对能源的利用效率,充分发挥风光水储等资源的互补优势,提高系统的经济性和稳定性。 展开更多
关键词 卧式抽蓄 多能互补系统 优化配置 容量配置
下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部