The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC'...The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC's business area,the power generation展开更多
The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zon...The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zone is considered a large intracontinental thrust-slip tectonic unit, which has undergone a long period of development. It was ultimately determined in the Yanshanian, where the typical Upper Paleozoic marine shales were deposited. In 2021, Well QSD-1 was deployed in the Liupanshui area at the northwest margin of the aulacogen, and obtained a daily shale gas flow of 11011 m3in the Carboniferous Dawuba Formation. It thus achieved a breakthrough in the invesgation of shale gas in the Lower Carboniferous in South China, revealing relatively good gas-bearing properties and broad exploration prospects of the aulacogen. Being different from the Lower Paleozoic strata in the Sichuan Basin and the Yichang area of the Middle Yangtze, the development of the Carboniferous Dawuba Formation in the aulacogen exhibits the following characteristics:(1) The Lower Carboniferous shale is thick and widely distributed, with interbedded shale and marlstone of virous thickness;(2) The total organic carbon(TOC) content of the shale in the Dawuba Formation ranges from 1% to 5%, with an average of 2%, and the thermal maturity of organic matter(Ro) varies from 1% to 4%, with an average of2.5%, indicating good hydrocarbon generation capacity;(3) The main shale in the aulacogen was formed during the fault subsidence stage from the Middle Devonian to the Early Permian. Although the strong compression and deformation during the late Indosinian-Himalayan played a certain role in destroying the formed shale gas reservoirs, comparative analysis suggests that the area covered by the current Triassic strata has a low degree of destruction. It therefore provides good conditions for shale gas preservation,which can be regarded as a favorable area for the next exploration.展开更多
The Sea of Japan is located in the southeast margin of Eurasia, in the triangle area of the western Pacific Ocean. Due to the interaction of the Pacific plate, Eurasian plate and Philippine plate, its tectonic environ...The Sea of Japan is located in the southeast margin of Eurasia, in the triangle area of the western Pacific Ocean. Due to the interaction of the Pacific plate, Eurasian plate and Philippine plate, its tectonic environment is complex, forming a typical trench-arc-basin system. At present, 148 oil and gas fields have been discovered in Japan, with an oil and gas resource of 255.78×10^(6) t, showing a good prospect for oil and gas exploration. Based on the previous research and the recently collected geological and geophysical data, the characteristics of tectonic-sedimentary evolution and geothermal field in the basins around the Sea of Japan are analyzed. The results show that the tectonic evolution of the basin is mainly controlled by plate subduction and back-arc oceanic crust expansion, and it mainly undergone four tectonic-sedimentary evolution stages: Subduction period, basin development period, subsidence period and compression deformation period. The overall heat flow value of Japan Sea is high, and it is distributed annularly along Yamato Ridge. The geothermal heat flow value is about 50–130 MW/m^(2), and the average heat flow is75.9±19.8 MW/m^(2), which has a typical “hot basin ”. The high heat flow background provides unique thermal evolution conditions for hydrocarbon generation, which leads to the high temperature and rapid evolution. The authors summarized as “early hydrocarbon generation, rapid maturity and shallow and narrow hydrocarbon generation window”. The type of oil and gas is mainly natural gas, and it mainly distributed in Neogene oil and gas reservoirs. The trap types are mainly structural traps, lithologic traps and composite traps. In addition, the pre-Neogene bedrock oil and gas reservoirs also show a good exploration prospect. The resource prospecting indicates that Niigata Basin, Ulleung Basin and kitakami Basin are the main target areas for future exploration and development.展开更多
Moving away from fossil fuels towards renewable sources requires system operators to determine the capacity of distribution systems to safely accommodate green and distributed generation(DG).However,the DG capacity of...Moving away from fossil fuels towards renewable sources requires system operators to determine the capacity of distribution systems to safely accommodate green and distributed generation(DG).However,the DG capacity of a distribution system is often underestimated due to either overly conservative electrical demand and DG output uncertainty modelling or neglecting the recourse capability of the available components.To improve the accuracy of DG capacity assessment,this paper proposes a distributionally adjustable robust chance-constrained approach that utilises uncertainty information to reduce the conservativeness of conventional robust approaches.The proposed approach also enables fast-acting devices such as inverters to adjust to the real-time realisation of uncertainty using the adjustable robust counterpart methodology.To achieve a tractable formulation,we first define uncertain chance constraints through distributionally robust conditional value-at-risk(CVaR),which is then reformulated into convex quadratic constraints.We subsequently solve the resulting large-scale,yet convex,model in a distributed fashion using the alternating direction method of multipliers(ADMM).Through numerical simulations,we demonstrate that the proposed approach outperforms the adjustable robust and conventional distributionally robust approaches by up to 15%and 40%,respectively,in terms of total installed DG capacity.展开更多
On the basis of summing up the development of electric power industry in the 10th Five-Year Plan period, the idea of electric power development planning from 2006 to 2020 is presented. The authors analyzed ten main pr...On the basis of summing up the development of electric power industry in the 10th Five-Year Plan period, the idea of electric power development planning from 2006 to 2020 is presented. The authors analyzed ten main problems that existed in electric development during the 10th Five-Year Plan period, forecasted the electricity generation from 2006 to 2020, put forward the development strategy of power industry, discussed the component and development program of hydropower, thermal power, nuclear power, natural gas power and renewable power, outlined the present situations of six regional power grids, power transmission from western to eastern regions, UHV AC/DC power transmission and nationwide power grid interconnections, and finally gave out seven suggestions about electric power development in the future.展开更多
The variation of electrical demand above its base value is its common characteristic. The weather dependent variation of demand, especially where the weather is severe in nature, requires a significant reserve margin ...The variation of electrical demand above its base value is its common characteristic. The weather dependent variation of demand, especially where the weather is severe in nature, requires a significant reserve margin of the generation system. The evaluation of the weather dependent component of the electric demand is the basic tool for the planning of the reserve margin. This paper evaluates the weather dependent portion of the load of BPS (Bangladesh power system). The evaluation of the weather dependent portion of the demand is based on the EMD (empirical mode decomposition) technique.展开更多
The grid connection of a high proportion of re-newable energy generation increases the uncertainty in power systems.Therefore,the flexibility margin of different energy sources needs to be quantified to cope with the ...The grid connection of a high proportion of re-newable energy generation increases the uncertainty in power systems.Therefore,the flexibility margin of different energy sources needs to be quantified to cope with the uncertainty change and maintain the dynamic balance of power system flexibility.In this paper,first,the flexibility characteristics of source,net,load and power and load community(PLC)are analyzed.The dynamic equilibrium relationship among them is briefly introduced.Secondly,taking into full consideration the complex output characteristics of different energy sources and combining their respective flexibility characteristics,a quantitative model of the power source flexibility margin for thermal power,hydro-power,gas power and concentrating solar power is established.A quantitative model for a power source flexibility margin in PV and wind power based on blind number theory is estab-lished.Furthermore,the calculation method of theoretical power generation capacity,which can reflect different characteristics of output power of various energy sources,is presented.The actual output power of each power source in each period is predicted.Finally,a case study shows that the model and method can consider the operating characteristics of different types of power sources,and quickly and accurately quantify the adjustable range of flexibility margins of each power source at different periods of time,which can provide an important basis for evaluating the capacity of renewable energy consumption and the optimal operation of multi-energy power systems(MEPSs).展开更多
文摘The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC's business area,the power generation
基金supported by the China Geological Survey Projects of Shale Gas Survey in the GuizhongNanpanjiang Area (DD20190088)Investigation and evaluation of Paleozoic shale gas in Yunnan-Guizhou-Guangxi region (DD20230264)+1 种基金Investigation and Evaluation of Carboniferous Shale Gas in Southern Guizhou-Central Guangxi (ZDDYR2023018)Reservoir Characteristics and Gas Accumulation of Trough-platform Shale: A Case Study of Early Carboniferous Shale in Yaziluo Rift Trough (YKC2023-YC08)。
文摘The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zone is considered a large intracontinental thrust-slip tectonic unit, which has undergone a long period of development. It was ultimately determined in the Yanshanian, where the typical Upper Paleozoic marine shales were deposited. In 2021, Well QSD-1 was deployed in the Liupanshui area at the northwest margin of the aulacogen, and obtained a daily shale gas flow of 11011 m3in the Carboniferous Dawuba Formation. It thus achieved a breakthrough in the invesgation of shale gas in the Lower Carboniferous in South China, revealing relatively good gas-bearing properties and broad exploration prospects of the aulacogen. Being different from the Lower Paleozoic strata in the Sichuan Basin and the Yichang area of the Middle Yangtze, the development of the Carboniferous Dawuba Formation in the aulacogen exhibits the following characteristics:(1) The Lower Carboniferous shale is thick and widely distributed, with interbedded shale and marlstone of virous thickness;(2) The total organic carbon(TOC) content of the shale in the Dawuba Formation ranges from 1% to 5%, with an average of 2%, and the thermal maturity of organic matter(Ro) varies from 1% to 4%, with an average of2.5%, indicating good hydrocarbon generation capacity;(3) The main shale in the aulacogen was formed during the fault subsidence stage from the Middle Devonian to the Early Permian. Although the strong compression and deformation during the late Indosinian-Himalayan played a certain role in destroying the formed shale gas reservoirs, comparative analysis suggests that the area covered by the current Triassic strata has a low degree of destruction. It therefore provides good conditions for shale gas preservation,which can be regarded as a favorable area for the next exploration.
基金jointly supported by the Major Project of National Laboratory for Marine Science and Technology (Qingdao) (2021QNLM020001-1, 2021QNLM020001-4)the Project of China Geology Survey (DD20221723, DD20230317)+3 种基金the National Natural Science Foundation of China (41776075, 42076220 and 42206234)the Natural Science Foundation of Shandong Province (ZR2020QD038)the Major Basic Research Projects of Shandong Province (ZR2021ZD09)funded by the Qingdao Institute of Marine Geology, China Geological Survey。
文摘The Sea of Japan is located in the southeast margin of Eurasia, in the triangle area of the western Pacific Ocean. Due to the interaction of the Pacific plate, Eurasian plate and Philippine plate, its tectonic environment is complex, forming a typical trench-arc-basin system. At present, 148 oil and gas fields have been discovered in Japan, with an oil and gas resource of 255.78×10^(6) t, showing a good prospect for oil and gas exploration. Based on the previous research and the recently collected geological and geophysical data, the characteristics of tectonic-sedimentary evolution and geothermal field in the basins around the Sea of Japan are analyzed. The results show that the tectonic evolution of the basin is mainly controlled by plate subduction and back-arc oceanic crust expansion, and it mainly undergone four tectonic-sedimentary evolution stages: Subduction period, basin development period, subsidence period and compression deformation period. The overall heat flow value of Japan Sea is high, and it is distributed annularly along Yamato Ridge. The geothermal heat flow value is about 50–130 MW/m^(2), and the average heat flow is75.9±19.8 MW/m^(2), which has a typical “hot basin ”. The high heat flow background provides unique thermal evolution conditions for hydrocarbon generation, which leads to the high temperature and rapid evolution. The authors summarized as “early hydrocarbon generation, rapid maturity and shallow and narrow hydrocarbon generation window”. The type of oil and gas is mainly natural gas, and it mainly distributed in Neogene oil and gas reservoirs. The trap types are mainly structural traps, lithologic traps and composite traps. In addition, the pre-Neogene bedrock oil and gas reservoirs also show a good exploration prospect. The resource prospecting indicates that Niigata Basin, Ulleung Basin and kitakami Basin are the main target areas for future exploration and development.
文摘Moving away from fossil fuels towards renewable sources requires system operators to determine the capacity of distribution systems to safely accommodate green and distributed generation(DG).However,the DG capacity of a distribution system is often underestimated due to either overly conservative electrical demand and DG output uncertainty modelling or neglecting the recourse capability of the available components.To improve the accuracy of DG capacity assessment,this paper proposes a distributionally adjustable robust chance-constrained approach that utilises uncertainty information to reduce the conservativeness of conventional robust approaches.The proposed approach also enables fast-acting devices such as inverters to adjust to the real-time realisation of uncertainty using the adjustable robust counterpart methodology.To achieve a tractable formulation,we first define uncertain chance constraints through distributionally robust conditional value-at-risk(CVaR),which is then reformulated into convex quadratic constraints.We subsequently solve the resulting large-scale,yet convex,model in a distributed fashion using the alternating direction method of multipliers(ADMM).Through numerical simulations,we demonstrate that the proposed approach outperforms the adjustable robust and conventional distributionally robust approaches by up to 15%and 40%,respectively,in terms of total installed DG capacity.
文摘On the basis of summing up the development of electric power industry in the 10th Five-Year Plan period, the idea of electric power development planning from 2006 to 2020 is presented. The authors analyzed ten main problems that existed in electric development during the 10th Five-Year Plan period, forecasted the electricity generation from 2006 to 2020, put forward the development strategy of power industry, discussed the component and development program of hydropower, thermal power, nuclear power, natural gas power and renewable power, outlined the present situations of six regional power grids, power transmission from western to eastern regions, UHV AC/DC power transmission and nationwide power grid interconnections, and finally gave out seven suggestions about electric power development in the future.
文摘The variation of electrical demand above its base value is its common characteristic. The weather dependent variation of demand, especially where the weather is severe in nature, requires a significant reserve margin of the generation system. The evaluation of the weather dependent component of the electric demand is the basic tool for the planning of the reserve margin. This paper evaluates the weather dependent portion of the load of BPS (Bangladesh power system). The evaluation of the weather dependent portion of the demand is based on the EMD (empirical mode decomposition) technique.
基金the National Key Research and Development Program of China(2017YFB0902200)Science and Technology Project of State Grid Corporation of China(5228001700CW)。
文摘The grid connection of a high proportion of re-newable energy generation increases the uncertainty in power systems.Therefore,the flexibility margin of different energy sources needs to be quantified to cope with the uncertainty change and maintain the dynamic balance of power system flexibility.In this paper,first,the flexibility characteristics of source,net,load and power and load community(PLC)are analyzed.The dynamic equilibrium relationship among them is briefly introduced.Secondly,taking into full consideration the complex output characteristics of different energy sources and combining their respective flexibility characteristics,a quantitative model of the power source flexibility margin for thermal power,hydro-power,gas power and concentrating solar power is established.A quantitative model for a power source flexibility margin in PV and wind power based on blind number theory is estab-lished.Furthermore,the calculation method of theoretical power generation capacity,which can reflect different characteristics of output power of various energy sources,is presented.The actual output power of each power source in each period is predicted.Finally,a case study shows that the model and method can consider the operating characteristics of different types of power sources,and quickly and accurately quantify the adjustable range of flexibility margins of each power source at different periods of time,which can provide an important basis for evaluating the capacity of renewable energy consumption and the optimal operation of multi-energy power systems(MEPSs).