In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific re...In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific restricted operation zones,that is,forbidden zones(FZs),to avoid the risks associated with hydropower unit vibration.FZs cause limitations in terms of both the hydropower generation and flexible regulation in the hydro-wind-solar power systems.Therefore,it is essential to consider FZs when determining the optimal wind-solar power capacity that can be compensated by the hydropower.This study presents a mathematical model that incorporates the FZ constraints into the CPHPS problem.Firstly,the FZs of the hydropower units are converted into those of the hydropower plants based on set theory.Secondly,a mathematical model was formulated for the CPHPS,which couples the FZ constraints of hydropower plants with other operational constraints(e.g.,power balance constraints,new energy consumption limits,and hydropower generation functions).Thirdly,dynamic programming with successive approximations is employed to solve the proposed model.Lastly,case studies were conducted on the hydro-wind-solar system of the Qingshui River to demonstrate the effectiveness of the proposed model.展开更多
Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we p...Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise.展开更多
On the basis of summing up the development of electric power industry in the 10th Five-Year Plan period, the idea of electric power development planning from 2006 to 2020 is presented. The authors analyzed ten main pr...On the basis of summing up the development of electric power industry in the 10th Five-Year Plan period, the idea of electric power development planning from 2006 to 2020 is presented. The authors analyzed ten main problems that existed in electric development during the 10th Five-Year Plan period, forecasted the electricity generation from 2006 to 2020, put forward the development strategy of power industry, discussed the component and development program of hydropower, thermal power, nuclear power, natural gas power and renewable power, outlined the present situations of six regional power grids, power transmission from western to eastern regions, UHV AC/DC power transmission and nationwide power grid interconnections, and finally gave out seven suggestions about electric power development in the future.展开更多
The reasonability of the adopted capacity load ratio numerical value in urban power grid planning determines the economy of planning level yearly power grid.Too large capacity load ratio will result in the increasing ...The reasonability of the adopted capacity load ratio numerical value in urban power grid planning determines the economy of planning level yearly power grid.Too large capacity load ratio will result in the increasing investment in the early period of power grid construction, however, too small capacity load ratio will make the power grid have poor adaptability, affecting the power supply. Reasonably determining the adopted regional power grid capacity load ratio quantitative numerical value in planning has a strong guiding significance for constructing reliable and economic power grid and preventing power grid from excessive advance or lagging behind the load development. This paper, through the statistics and analysis of a certain regional power grid 2010-2012 three years' power grid daily load characteristics and the investment benefit evaluation of three years' 220KV power grid individual project, makes a preliminary analysis and puts forwards the specific advice on the reasonable values of power ~rid 35-220KV power transformation capacity load ratio.展开更多
The current energy supply trajectory in the Association of Southeast Asian Nations(ASEAN)region is not sustainable.Factors such as rising standards of living and demographic patterns,including population growth,lead t...The current energy supply trajectory in the Association of Southeast Asian Nations(ASEAN)region is not sustainable.Factors such as rising standards of living and demographic patterns,including population growth,lead to continuous increase in power demand,which is difficult to meet using limited fossil fuel resources.Thus,a transition toward clean energy sources is needed in the region.While ASEAN member countries are rich in clean energy resources,such resources are located far from demand centers;thus,allocation of clean energy is necessary to increase its utilization.In this study,power demand is forecasted using a combination of prediction methods.A model to evaluate the installed capacity and power exchange potential is proposed to deal with mismatch between the location of the clean energy base and the load center.Furthermore,the concept of cross-regional allocation of clean energy between the ASEAN region,China,and South Asia is presented.A power interconnection scheme among the ASEAN member countries as well as neighboring countries is proposed based on the power exchange potential.The proposed grid interconnection scheme contributes to the utilization of clean energy in the ASEAN region,increasing the proportion of clean energy in the generation mix,which ensures that the region becomes a sustainable and resilient society with a clean and low carbon development route.Furthermore,the proposed power interconnection scheme will generate valuable economic,social,environmental,and resource allocation benefits.展开更多
Economic issue is the very focus of China's wind power development.Although all the security problems can be dealt with through technical measures,the compensation for supportive thermal power units and the subsid...Economic issue is the very focus of China's wind power development.Although all the security problems can be dealt with through technical measures,the compensation for supportive thermal power units and the subsidy from economically developed regions to resource-outputting regions would require a higher level of strategic considerations.The core purpose of developing wind energy is to reduce pollutant emissions,so planners should take into account the overall cost of all sides,without touching the bottom of social affordability.展开更多
文摘In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific restricted operation zones,that is,forbidden zones(FZs),to avoid the risks associated with hydropower unit vibration.FZs cause limitations in terms of both the hydropower generation and flexible regulation in the hydro-wind-solar power systems.Therefore,it is essential to consider FZs when determining the optimal wind-solar power capacity that can be compensated by the hydropower.This study presents a mathematical model that incorporates the FZ constraints into the CPHPS problem.Firstly,the FZs of the hydropower units are converted into those of the hydropower plants based on set theory.Secondly,a mathematical model was formulated for the CPHPS,which couples the FZ constraints of hydropower plants with other operational constraints(e.g.,power balance constraints,new energy consumption limits,and hydropower generation functions).Thirdly,dynamic programming with successive approximations is employed to solve the proposed model.Lastly,case studies were conducted on the hydro-wind-solar system of the Qingshui River to demonstrate the effectiveness of the proposed model.
基金funded by Major Science and Technology Projects in Gansu Province(19ZD2GA003).
文摘Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise.
文摘On the basis of summing up the development of electric power industry in the 10th Five-Year Plan period, the idea of electric power development planning from 2006 to 2020 is presented. The authors analyzed ten main problems that existed in electric development during the 10th Five-Year Plan period, forecasted the electricity generation from 2006 to 2020, put forward the development strategy of power industry, discussed the component and development program of hydropower, thermal power, nuclear power, natural gas power and renewable power, outlined the present situations of six regional power grids, power transmission from western to eastern regions, UHV AC/DC power transmission and nationwide power grid interconnections, and finally gave out seven suggestions about electric power development in the future.
文摘The reasonability of the adopted capacity load ratio numerical value in urban power grid planning determines the economy of planning level yearly power grid.Too large capacity load ratio will result in the increasing investment in the early period of power grid construction, however, too small capacity load ratio will make the power grid have poor adaptability, affecting the power supply. Reasonably determining the adopted regional power grid capacity load ratio quantitative numerical value in planning has a strong guiding significance for constructing reliable and economic power grid and preventing power grid from excessive advance or lagging behind the load development. This paper, through the statistics and analysis of a certain regional power grid 2010-2012 three years' power grid daily load characteristics and the investment benefit evaluation of three years' 220KV power grid individual project, makes a preliminary analysis and puts forwards the specific advice on the reasonable values of power ~rid 35-220KV power transformation capacity load ratio.
基金supported by the Science and Technology Foundation of GEIG (No.524500180014)
文摘The current energy supply trajectory in the Association of Southeast Asian Nations(ASEAN)region is not sustainable.Factors such as rising standards of living and demographic patterns,including population growth,lead to continuous increase in power demand,which is difficult to meet using limited fossil fuel resources.Thus,a transition toward clean energy sources is needed in the region.While ASEAN member countries are rich in clean energy resources,such resources are located far from demand centers;thus,allocation of clean energy is necessary to increase its utilization.In this study,power demand is forecasted using a combination of prediction methods.A model to evaluate the installed capacity and power exchange potential is proposed to deal with mismatch between the location of the clean energy base and the load center.Furthermore,the concept of cross-regional allocation of clean energy between the ASEAN region,China,and South Asia is presented.A power interconnection scheme among the ASEAN member countries as well as neighboring countries is proposed based on the power exchange potential.The proposed grid interconnection scheme contributes to the utilization of clean energy in the ASEAN region,increasing the proportion of clean energy in the generation mix,which ensures that the region becomes a sustainable and resilient society with a clean and low carbon development route.Furthermore,the proposed power interconnection scheme will generate valuable economic,social,environmental,and resource allocation benefits.
文摘Economic issue is the very focus of China's wind power development.Although all the security problems can be dealt with through technical measures,the compensation for supportive thermal power units and the subsidy from economically developed regions to resource-outputting regions would require a higher level of strategic considerations.The core purpose of developing wind energy is to reduce pollutant emissions,so planners should take into account the overall cost of all sides,without touching the bottom of social affordability.