A growing demand for passenger and freight transportation, combined with limited capital to expand the United States (U.S.) rail infrastructure, is creating pressure for a more efficient use of the current line capa...A growing demand for passenger and freight transportation, combined with limited capital to expand the United States (U.S.) rail infrastructure, is creating pressure for a more efficient use of the current line capacity. This is further exacerbated by the fact that most passenger rail services operate on corridors that are shared with freight traffic. A capacity analysis is one alternative to address the situation and there are various approaches, tools, and methodologies available for application. As the U.S. continues to develop higher speed passenger services with similar characteristics to those in European shared-use lines, understanding the common methods and tools used on both continents grows in relevance. There has not as yet been a detailed investigation as to how each continent approaches capacity analysis, and whether any benefits could be gained from cross-pollination. This paper utilizes more than 50 past capacity studies from the U.S. and Europe to describe the different railroad capacity defini- tions and approaches, and then categorizes them, based on each approach. The capacity methods are commonly di- vided into analytical and simulation methods, but this paper also introduces a third, "combined simulation- analytical" category. The paper concludes that Europeanrail studies are more unified in terms of capacity, concepts, and techniques, while the U.S. studies represent a greater variation in methods, tools, and objectives. The majority of studies on both continents use either simulation or a combined simulation-analytical approach. However, due to the significant differences between operating philosophy and network characteristics of these two rail systems, European studies tend to use timetable-based simulation tools as opposed to the non-timetable-based tools commonly used in the U.S. rail networks. It was also found that validation of studies against actual operations was not typically completed or was limited to comparisons with a base model.展开更多
In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi...In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.展开更多
Existing studies on modern roundabouts performance are mostly based on data fron: singe lane roundabouts that are not heavily congested. For planners and designers interested in building multilane roundabouts for int...Existing studies on modern roundabouts performance are mostly based on data fron: singe lane roundabouts that are not heavily congested. For planners and designers interested in building multilane roundabouts for intersections with potential growth i~ future traffic, there has been a lack of existing studies with field data that provide reference values in terms of capacity and delay measurements. With the intent of providing such reference values, a case study was conducted by using the East DowlinC Road Roundabouts in Anchorage, Alaska, which are currently operating with extensive queues during the evening peak hours. This research used multiple video camcorders t( capture vehicle turning movements at the roundabouts as well as the progressior~ of vehicle queues at the roundabout entrance approaches. With these video records, the number of vehicles in the queues can be accurately counted in any single minute during the peak hours. This study shows that unbalanced entrance flow patterns (i.e., ~ne entrance has significant higher flow than others) can intensify the queue and delay fo., the overall roundabouts. Then various software packages including RODEL, SIDRA and VISSIM were used to estimate several performance measurements, such as capacity. queue length, and delay, compared with the collected field data. With the comparison, it is found that all the three software packages overestimate multi-lane roundabout ca pacity before calibration. With default parameters, SIDRA and VISSIM tend to underes timate delays and queue lengths for the multi-lane roundabouts under congestion, while RODEL results in higher delay and queue length estimations at most of the entrance approaches.展开更多
文摘A growing demand for passenger and freight transportation, combined with limited capital to expand the United States (U.S.) rail infrastructure, is creating pressure for a more efficient use of the current line capacity. This is further exacerbated by the fact that most passenger rail services operate on corridors that are shared with freight traffic. A capacity analysis is one alternative to address the situation and there are various approaches, tools, and methodologies available for application. As the U.S. continues to develop higher speed passenger services with similar characteristics to those in European shared-use lines, understanding the common methods and tools used on both continents grows in relevance. There has not as yet been a detailed investigation as to how each continent approaches capacity analysis, and whether any benefits could be gained from cross-pollination. This paper utilizes more than 50 past capacity studies from the U.S. and Europe to describe the different railroad capacity defini- tions and approaches, and then categorizes them, based on each approach. The capacity methods are commonly di- vided into analytical and simulation methods, but this paper also introduces a third, "combined simulation- analytical" category. The paper concludes that Europeanrail studies are more unified in terms of capacity, concepts, and techniques, while the U.S. studies represent a greater variation in methods, tools, and objectives. The majority of studies on both continents use either simulation or a combined simulation-analytical approach. However, due to the significant differences between operating philosophy and network characteristics of these two rail systems, European studies tend to use timetable-based simulation tools as opposed to the non-timetable-based tools commonly used in the U.S. rail networks. It was also found that validation of studies against actual operations was not typically completed or was limited to comparisons with a base model.
基金supported by the Water Conservancy Science and Technology Project of Jiangsu Province(Grant No.2012041)the Jiangsu Province Ordinary University Graduate Student Research Innovation Project(Grant No.CXZZ13_0256)
文摘In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.
基金sponsored by Alaska University Transportation Center(AUTC,No.RR08.08)Alaska Department of Transportation(AK DOT)
文摘Existing studies on modern roundabouts performance are mostly based on data fron: singe lane roundabouts that are not heavily congested. For planners and designers interested in building multilane roundabouts for intersections with potential growth i~ future traffic, there has been a lack of existing studies with field data that provide reference values in terms of capacity and delay measurements. With the intent of providing such reference values, a case study was conducted by using the East DowlinC Road Roundabouts in Anchorage, Alaska, which are currently operating with extensive queues during the evening peak hours. This research used multiple video camcorders t( capture vehicle turning movements at the roundabouts as well as the progressior~ of vehicle queues at the roundabout entrance approaches. With these video records, the number of vehicles in the queues can be accurately counted in any single minute during the peak hours. This study shows that unbalanced entrance flow patterns (i.e., ~ne entrance has significant higher flow than others) can intensify the queue and delay fo., the overall roundabouts. Then various software packages including RODEL, SIDRA and VISSIM were used to estimate several performance measurements, such as capacity. queue length, and delay, compared with the collected field data. With the comparison, it is found that all the three software packages overestimate multi-lane roundabout ca pacity before calibration. With default parameters, SIDRA and VISSIM tend to underes timate delays and queue lengths for the multi-lane roundabouts under congestion, while RODEL results in higher delay and queue length estimations at most of the entrance approaches.