According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotr...According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotron radiation source is developed for capillary optics. Using this theoretical modeling, the influences of the configuration curve of the polycapillary X-ray lens on transmission efficiency and working distance are analyzed. The experimental results of the transmission efficiency and working distance at the biological macromolecule station are in good agreement with the theoretical results.展开更多
A new type of x-ray lens composed of multi-square polycapillary slices(ASPXRL)used in focusing parallel x-ray beam was presented in this paper.Compared with conventional x-ray polycapillary lens,ASPXRL can provide sma...A new type of x-ray lens composed of multi-square polycapillary slices(ASPXRL)used in focusing parallel x-ray beam was presented in this paper.Compared with conventional x-ray polycapillary lens,ASPXRL can provide smaller and brighter focus.The effects of the manufacturing imperfections on focusing quality of ASPXRL were evaluated with the values of transmission efficiency and discussed.It is suggested that ASPXRL has application prospects as a condenser lens for x-ray microscopy and flux collectors for x-ray analytical instruments.展开更多
Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this in...Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this instrumental setup to analyze a Si single crystal and a 50 nm HfO_(2) single-layer film deposited on a Si substrate.展开更多
The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-n...The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-nm-thick outermost layer and a total thickness of 17 μm, is prepared by DC magnetron sputtering. Regarding the thin film growth rate calibration, we correct the long-term growth rate drift from 2 to 0.6%, as measured by the grazing incidence X-ray reflectivity(GIXRR). A one-dimensional line focusing resolution of 64 nm was achieved,while the diffraction efficiency was 38% of the-1 order of the MLL Shanghai Synchrotron Radiation Facility(SSRF) with the BL15U beamline.展开更多
The x-ray compound lens is a novel refractive x-ray optical device. This paper reports the authors' recent research on a polymethyl methacrylate (PMMA) compound x-ray lens. Firstly the designing and LIGA fabricatio...The x-ray compound lens is a novel refractive x-ray optical device. This paper reports the authors' recent research on a polymethyl methacrylate (PMMA) compound x-ray lens. Firstly the designing and LIGA fabrication process for the PMMA compound x-ray lens are briefly described. Then, a method for theoretical analysis, as well as the experimental system for measurement is also introduced. Finally, the focusing spots for 8keV monochromatic x-rays by the PMMA compound x-ray lens are measured and analysed. According to the experimental results, it is concluded that the PMMA compound x-ray lens promises a good focusing performance under the high-energy x-rays.展开更多
Transmission beam can be modulated at the liquid-liquid interface inside an electrowetting liquid lens.The fluctuation characteristics of the interface has a decisive effect on the beam modulation.A closed cylinder in...Transmission beam can be modulated at the liquid-liquid interface inside an electrowetting liquid lens.The fluctuation characteristics of the interface has a decisive effect on the beam modulation.A closed cylinder in capillary constant scale is analyzed and the natural frequencies of a flat interface are obtained using capillary wave hydrodynamics.Results in modes 0 and 1 are in good agreement with previous experiments in the literature.The influences of the radius,the height ratio and the height-to-diameter ratio of a liquid lens on the interface eigenfrequencies are analyzed.展开更多
We designed and fabricated a multilayer Laue lens (MLL) as a hard X-ray focusing device. WSi2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface. The multilayer sam...We designed and fabricated a multilayer Laue lens (MLL) as a hard X-ray focusing device. WSi2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface. The multilayer sample was fabricated by using direct current (DC) magnetron sputtering technology and then was sliced and thinned to form an MLL. The thickness of each layer was determined by scanning electron microscopy (SEM) image analysis with marking layers. The focusing property of the MLL was measured at Beamline 15U, Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 92 nm are obtained at photon energy of 14 keV.展开更多
The multilayer Laue lens (MLL) is a novel diffraction optics which can realize nanometer focusing of hard X-rays with high efficiency. In this paper, a 7.9 μm-thick MLL with the outmost layer thickness of 15 nm is ...The multilayer Laue lens (MLL) is a novel diffraction optics which can realize nanometer focusing of hard X-rays with high efficiency. In this paper, a 7.9 μm-thick MLL with the outmost layer thickness of 15 nm is designed based on dynamical diffraction theory. The MLL is fabricated by first depositing the depth-graded multilayer using direct current (DC) magnetron sputtering technology. Then, the multilayer sample is sliced, and both cross-sections are thinned and polished to a depth of 35–41 μm. The focusing property of the MLL is measured at the Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 205 nm and 221 nm are obtained at E=14 keV and 18 keV, respectively. It demonstrates that the fabricated MLL can focus hard X-rays into nanometer scale.展开更多
Purpose The Filed of View(FOV)of eXTP/LAD is limited by lead-glass capillary plate collimators placed in front of the Silicon Drift Detectors(SDDs)for reducing the background contamination caused by the photons of Cos...Purpose The Filed of View(FOV)of eXTP/LAD is limited by lead-glass capillary plate collimators placed in front of the Silicon Drift Detectors(SDDs)for reducing the background contamination caused by the photons of Cosmic X-ray Background(CXB)leaking from outside the FOV.The core quality parameters of lead-glass capillary plate collimators are Open Area Ratio(OAR)and FOV.The performance of lead-glass capillary plate collimators is determined by its design specification such as pore-to-pore misalignment,pore perpendicularity with collimator surface and pore diameter.Since the design specification is the result of a large number of micropores,we use the full width at half maximum(FWHM)and peak value of point spread function(PSF)to characterize the capillary plate collimator performance.In order to quickly evaluate the performances of collimators,we developed a direct PSF measurement method using divergent beams.Methods In this paper,the simulation package of the divergent beamsmeasurement setup is developed based on Geant4.The simulation parameters of scintillator absorption length are corrected by experimental data.We simulate the PSF of collimators with different distribution of pore diameter and misalignment by parallel beams and divergent beams.By comparing the peak value and FWHM of collimators PSF,the feasibility in replacing parallel beams measurement with divergent beams measurement is studied.Results It is verified that the influence of the geometric size of 33μm radius of the micro-focus of X-ray tube can be ignored.The results show that the FWHM of collimators is increased with error root mean square error(RMS)of the distribution of collimators pore diameter and pore inclination angle.The peak value of PSF is mainly influenced by pore non-parallelism of the pores,and it decreases with an increase in pore inclination angle.Comparison of parallel beams PSF and divergent beams PSF shows well consistency of peak value and FWHM of collimator.But,the peak value of the divergent beams PSF is mainly affected by the defects of the pores close to the optical axis and result in difference from the parallel beams results consequently.We have developed capillary plate collimators response function based on the projected area function of a cylindrical pore and the fluorescence broadening of the scintillator and fitted PSF by response function.The capillary plate collimator open area ratio is calculated by using the micropores radius and collimator frame thickness obtained by fitting parameter,and the result is close to the parallel beams PSF.Conclusion The feasibility divergent beams measurement is verified.展开更多
A method based on Fourier spectrum analysis for predicting the performances of the X-ray compound lenses is briefly introduced, the theoretical result obtained is the same as that of Fresnel-Kirchhoff approach. A kind...A method based on Fourier spectrum analysis for predicting the performances of the X-ray compound lenses is briefly introduced, the theoretical result obtained is the same as that of Fresnel-Kirchhoff approach. A kind of technique named moulding is developed for fabricating the one-dimensional (1D) compound X-ray lens with Al material and the fabrication process is presented. In addition, a two-time coating method is used to improve the numerical apertures of the compound lenses. Furthermore, the focusing performance of the Al compound X-ray lens under the high energy X-rays is measured.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11179010 and 11075017 )the Natural Science Foundation of Beijing,China (Grant No. 1102019)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100003120010)
文摘According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotron radiation source is developed for capillary optics. Using this theoretical modeling, the influences of the configuration curve of the polycapillary X-ray lens on transmission efficiency and working distance are analyzed. The experimental results of the transmission efficiency and working distance at the biological macromolecule station are in good agreement with the theoretical results.
基金supported by the National Natural Science Foundation of China(Grant No.11875087)。
文摘A new type of x-ray lens composed of multi-square polycapillary slices(ASPXRL)used in focusing parallel x-ray beam was presented in this paper.Compared with conventional x-ray polycapillary lens,ASPXRL can provide smaller and brighter focus.The effects of the manufacturing imperfections on focusing quality of ASPXRL were evaluated with the values of transmission efficiency and discussed.It is suggested that ASPXRL has application prospects as a condenser lens for x-ray microscopy and flux collectors for x-ray analytical instruments.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFF0701202)the National Natural Science Foundation of China(Grant No.11875087)。
文摘Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this instrumental setup to analyze a Si single crystal and a 50 nm HfO_(2) single-layer film deposited on a Si substrate.
基金the National Natural Science Foundation of China(Nos.12005250,U1932167,and U1432244).
文摘The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-nm-thick outermost layer and a total thickness of 17 μm, is prepared by DC magnetron sputtering. Regarding the thin film growth rate calibration, we correct the long-term growth rate drift from 2 to 0.6%, as measured by the grazing incidence X-ray reflectivity(GIXRR). A one-dimensional line focusing resolution of 64 nm was achieved,while the diffraction efficiency was 38% of the-1 order of the MLL Shanghai Synchrotron Radiation Facility(SSRF) with the BL15U beamline.
基金Project supported by the National Natural Science Foundation of China (Grant No 10174079), the Natural Science Foundation of Zhejiang Province, China (Grant No Y104203) and BEPC National Laboratory (Grant No sr-03062).
文摘The x-ray compound lens is a novel refractive x-ray optical device. This paper reports the authors' recent research on a polymethyl methacrylate (PMMA) compound x-ray lens. Firstly the designing and LIGA fabrication process for the PMMA compound x-ray lens are briefly described. Then, a method for theoretical analysis, as well as the experimental system for measurement is also introduced. Finally, the focusing spots for 8keV monochromatic x-rays by the PMMA compound x-ray lens are measured and analysed. According to the experimental results, it is concluded that the PMMA compound x-ray lens promises a good focusing performance under the high-energy x-rays.
文摘Transmission beam can be modulated at the liquid-liquid interface inside an electrowetting liquid lens.The fluctuation characteristics of the interface has a decisive effect on the beam modulation.A closed cylinder in capillary constant scale is analyzed and the natural frequencies of a flat interface are obtained using capillary wave hydrodynamics.Results in modes 0 and 1 are in good agreement with previous experiments in the literature.The influences of the radius,the height ratio and the height-to-diameter ratio of a liquid lens on the interface eigenfrequencies are analyzed.
基金Supported by National Natural Science Foundation of China(U1432244,11375131)Major State Basic Research Development Program(2011CB922203)
文摘We designed and fabricated a multilayer Laue lens (MLL) as a hard X-ray focusing device. WSi2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface. The multilayer sample was fabricated by using direct current (DC) magnetron sputtering technology and then was sliced and thinned to form an MLL. The thickness of each layer was determined by scanning electron microscopy (SEM) image analysis with marking layers. The focusing property of the MLL was measured at Beamline 15U, Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 92 nm are obtained at photon energy of 14 keV.
基金Supported by National Natural Science Foundation of China (10825521)973 Project (2011CB922203)Natural Science Foundation of Shanghai (09ZR1434300)
文摘The multilayer Laue lens (MLL) is a novel diffraction optics which can realize nanometer focusing of hard X-rays with high efficiency. In this paper, a 7.9 μm-thick MLL with the outmost layer thickness of 15 nm is designed based on dynamical diffraction theory. The MLL is fabricated by first depositing the depth-graded multilayer using direct current (DC) magnetron sputtering technology. Then, the multilayer sample is sliced, and both cross-sections are thinned and polished to a depth of 35–41 μm. The focusing property of the MLL is measured at the Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 205 nm and 221 nm are obtained at E=14 keV and 18 keV, respectively. It demonstrates that the fabricated MLL can focus hard X-rays into nanometer scale.
基金We would like to acknowledge support from the Strategic Priority Program on Space Science,China,the Chinese Academy of Sciences,Grant No.XDA15020500.
文摘Purpose The Filed of View(FOV)of eXTP/LAD is limited by lead-glass capillary plate collimators placed in front of the Silicon Drift Detectors(SDDs)for reducing the background contamination caused by the photons of Cosmic X-ray Background(CXB)leaking from outside the FOV.The core quality parameters of lead-glass capillary plate collimators are Open Area Ratio(OAR)and FOV.The performance of lead-glass capillary plate collimators is determined by its design specification such as pore-to-pore misalignment,pore perpendicularity with collimator surface and pore diameter.Since the design specification is the result of a large number of micropores,we use the full width at half maximum(FWHM)and peak value of point spread function(PSF)to characterize the capillary plate collimator performance.In order to quickly evaluate the performances of collimators,we developed a direct PSF measurement method using divergent beams.Methods In this paper,the simulation package of the divergent beamsmeasurement setup is developed based on Geant4.The simulation parameters of scintillator absorption length are corrected by experimental data.We simulate the PSF of collimators with different distribution of pore diameter and misalignment by parallel beams and divergent beams.By comparing the peak value and FWHM of collimators PSF,the feasibility in replacing parallel beams measurement with divergent beams measurement is studied.Results It is verified that the influence of the geometric size of 33μm radius of the micro-focus of X-ray tube can be ignored.The results show that the FWHM of collimators is increased with error root mean square error(RMS)of the distribution of collimators pore diameter and pore inclination angle.The peak value of PSF is mainly influenced by pore non-parallelism of the pores,and it decreases with an increase in pore inclination angle.Comparison of parallel beams PSF and divergent beams PSF shows well consistency of peak value and FWHM of collimator.But,the peak value of the divergent beams PSF is mainly affected by the defects of the pores close to the optical axis and result in difference from the parallel beams results consequently.We have developed capillary plate collimators response function based on the projected area function of a cylindrical pore and the fluorescence broadening of the scintillator and fitted PSF by response function.The capillary plate collimator open area ratio is calculated by using the micropores radius and collimator frame thickness obtained by fitting parameter,and the result is close to the parallel beams PSF.Conclusion The feasibility divergent beams measurement is verified.
基金This work was supported by the Research Foundation from Ministry of Education of China (No. 204060), and the Natural Science Foundation of Zhejiang Province (No. Y104203).
文摘A method based on Fourier spectrum analysis for predicting the performances of the X-ray compound lenses is briefly introduced, the theoretical result obtained is the same as that of Fresnel-Kirchhoff approach. A kind of technique named moulding is developed for fabricating the one-dimensional (1D) compound X-ray lens with Al material and the fabrication process is presented. In addition, a two-time coating method is used to improve the numerical apertures of the compound lenses. Furthermore, the focusing performance of the Al compound X-ray lens under the high energy X-rays is measured.