期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Comprehensive tests on rising height of capillary water for coarse grained soil 被引量:4
1
作者 GUO Qingsong LI Xin LI Min 《Global Geology》 2013年第1期54-58,共5页
According to the comprehensive tests on the rising height of capillary water for seven kinds of differ- ent coarse grained soil by use of the method of standpipe, the relationship between the rising height of capillar... According to the comprehensive tests on the rising height of capillary water for seven kinds of differ- ent coarse grained soil by use of the method of standpipe, the relationship between the rising height of capillary water and time was obtained, and the influencing factors and rules were analyzed. The data of the steady rising height of capillary water were obtained, and the regression equation of coarse grained soil on steady height and physical indexes (effective grain dl0 and porosity n) was found. Compared with Hazen's and other expressions that could estimate the steady height of capillary water of coarse grained soil, the proposed method is satisfactory and the defects of the latter were pointed out. 展开更多
关键词 method of standpipe coarse grained soil rising height of capillary water degree of compaction
下载PDF
Drainage performance and capillary rise restraint effect of wicking geotextile 被引量:1
2
作者 BAI Mei LIU Zhi-bin +2 位作者 ZHANG Shu-jian LIU Feng LEI Song-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期3260-3267,共8页
Wicking geotextile(WG)is considered as a possible countermeasure to reduce water content in unsaturated soil.In this research,rainfall tests were carried out to verify the drainage performance of WG.And capillary rise... Wicking geotextile(WG)is considered as a possible countermeasure to reduce water content in unsaturated soil.In this research,rainfall tests were carried out to verify the drainage performance of WG.And capillary rise tests were conducted to study the effect of WG on the prevention of capillary rise.Test results indicated that WG with good drainage performance could drain gravitational and capillary water out of kaolinite soil.For kaolinite soil column with water content of 12%and compaction degree of 90%,the whole process of capillary rise in soil column with a layer of WG was a typical two-stage mode,and the maximum capillary height was about 380 mm,which provided that the WG could work as a barrier to prevent capillary rise effectively.In addition,the total vertical influential regions of WG in kaolinite soil above and below the WG layer were 400 and 100 mm,respectively. 展开更多
关键词 GEOSYNTHETICS wicking geotextile fine-grained soil drainage performance capillary rise soil column test
下载PDF
Soil water repellency and influencing factors of Nitraria tangutorun nebkhas at different succession stages 被引量:11
3
作者 HaoTian YANG XinRong LI +3 位作者 LiChao LIU YanHong GAO Gang LI RongLiang JIA 《Journal of Arid Land》 SCIE CSCD 2014年第3期300-310,共11页
Abstract: Soil water repellency (WR) is an important physical characteristic of soil surface. It is capable of largely influencing the hydrological and geomorphological processes of soil, as well as affecting the e... Abstract: Soil water repellency (WR) is an important physical characteristic of soil surface. It is capable of largely influencing the hydrological and geomorphological processes of soil, as well as affecting the ecological processes of plants, such as growth and seed germination, and has thus been a hot topic in recent research around the world. In this paper, the capillary rise method was used to study the soil WR characteristics of Nitraria tangutorun nebkhas. Soil water repellencies at different succession stages of Nitraria tangutorun were investigated, and the relationships between soil WR and soil organic matter, total N, and total P, soil texture, pH, and concentrations of CO32, HCO3-, CI, SO42-, Na~, K~, Ca2~ and Mg2+ were discussed. Soil WR may be demonstrated at the following nebkhas dune evolvement stages: extremely degraded〉degraded〉stabilized〉well developed〉newly developed〉quick sand. Apart from some soil at the bottom, the WR of other soils (crest and slope of dune) was found to be largest at the topsoil, and decreased as the soil depth increased. The results showed that multiple factors affected soil WR characteristics e.g. WR increased significantly as the contents of soil organic matter and total N increased, but did not change as the total P content increased. Soil texture was a key factor affecting soil WR; soil WR increased significantly as clay content increased, and decreased significantly as sand content increased. Low pH was shown to be more suitable for the occurrence of soil WR. Four cations (Ca2+, Mg2+, K+ and Na+) and two anions (CI and SO42) enhanced soil WR, while CO32-decreased it. HCO3- did not show any observable effect. Finally, we established a best-fit general linear model (GLM) between soil-air-water contact angle (CA) and influencing factors (CA=5.606 sand+6.496 (clay and silt)-2.353 pH+470.089 CQ2+11.346 Na+-407.707 Cl--14.245 SO42-+0.734 total N-519.521 ). It was concluded that all soils contain subcritical WR (0°〈CA〈90°). The development and succession of Nitraria tangutorun nebkhas may improve the formation of soil subcritical WR. There exist significant relationships between soils subcritical WR and soil physical or chemical properties. 展开更多
关键词 HYDROPHOBICITY soil-air-water contact angle capillary rise method Nitraria tangutorun nebkhas vegetation succession stage
下载PDF
Characteristics of soil water repellency after sand dune stabilization in the Tengger Desert 被引量:2
4
作者 HaoTian Yang LiChao Liu XinRong Li YongPing Wei YanHong Gao XiaoJun Li RongLiang Jia Lei Huang 《Research in Cold and Arid Regions》 2012年第5期408-416,共9页
Soil water repellency (SWR) is one of the most important physical properties of soils found all over the world, and it may have significant effects on the eco-hydrological processes of land ecosystems. In this study... Soil water repellency (SWR) is one of the most important physical properties of soils found all over the world, and it may have significant effects on the eco-hydrological processes of land ecosystems. In this study, the Capillary Rise Method was used to measure the SWR in the artificial vegetation area in Shapotou, located in the southeast area of the Tengger Desert, Ningxia Prov- ince of western China. The variation of the soil water repellency among different minor topographies, different depths and differ- ent particle sizes was analyzed. The results of the study indicate that the SWR shows distinct changes with vegetation restoration, and it increases with an increase in the period of dune stabilization. In the same vegetation area, the SWR of soils in inter-dune depressions or windward slopes is slightly greater than that in crest or leeward slopes. The SWR of 0-3 cm topsoil is significantly greater than that in the 3-6 cm soil layer. The SWR decreases with an increase in grain size and the differences among the SWRs of different sieved soil fractions are found to be significant. There is also a significantly positive correlation between the SWR and the proportion of soils with grain sizes of 0-0.05, 0.05-0.01 and 0.01-0.15 mm, and a significantly negative correlation between the SWR and the propotion of soils with grain sizes exceeding 0.15 mm. The increase of SWR in revegetation areas may depend on the continuous depositing of atmospheric dust on the stabilized dune surface as well as the formation of biological soil crusts, especially on the formation of algal and lichen crusts. Enhanced SWR influences the effectiveness of water use of sand plants in- habiting the sand dunes. 展开更多
关键词 soil water repellency soil contact angle capillary Rise Method vegetation restoration southeast area of the Tengger Desert
下载PDF
Bioinspired directional liquid transport induced by the corner effect 被引量:1
5
作者 Zhongyu Shi Zhongxue Tang +2 位作者 Bojie Xu Lei Jiang Huan Liu 《Nano Research》 SCIE EI CSCD 2023年第3期3913-3923,共11页
Many natural creatures have demonstrated unique abilities in directional liquid transport(DLT)for better adapting to the local environment,which,for a long time,have inspired the material fabrication for applications ... Many natural creatures have demonstrated unique abilities in directional liquid transport(DLT)for better adapting to the local environment,which,for a long time,have inspired the material fabrication for applications in microfluidics,self-cleaning,water collection,etc.Recently,DLTs aroused by the corner effect have been witnessed in various natural organisms,where liquid transports/spreads spontaneously along the corner structures in microgrooves,wedges or conical structures driven by micro-/nano-scaled capillary forces without external energy input.Particularly,these DLTs show advantages of ultrahigh speed,continuous proceeding,and/or external controllability.Here,we reviewed recent research advances on the bioinspired DLTs induced by the corner effect,as well as the involved mechanisms and the artificial counterpart materials with various applications.We also introduced some bioinspired materials that are capable of stimulus-responsive DLT under external fields.Finally,we suggested perspectives of the bioinspired DLTs in liquid manipulations. 展开更多
关键词 directional liquid transport bioinspired materials corner effect capillary rise Laplace pressure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部