Centered or striped wick structures have been used to develop ultrathin heat pipes.Differing from traditional heat pipes,the centered or striped wick structures leave noncontact container surfaces with the wick struct...Centered or striped wick structures have been used to develop ultrathin heat pipes.Differing from traditional heat pipes,the centered or striped wick structures leave noncontact container surfaces with the wick structure.In this study,experiments andnumerical analyseswere conductedtoinvestigate the influenceof thesenoncontact surfaces.In the experiments,a strip-shaped wick structure was placed vertically,the top was sandwiched between wider rods and the bottom was immersed in a working fluid.The rod width was greater than the wick width;thus,noncontact surfaces were left between the rod and the wick structure.The heat was applied from the rod to the wick structure,and the evaporation heat transfer characteristics of the working fluid from the wick structure were evaluated.Water was used as the working fluid.The experiments were conducted by varying the rod and wick widths.The experimental results were obtained when the wick structures were placed separately.In the numerical analyses,the temperature and heat flux distributions in the rod were obtained.From the experimental and numerical results,it was confirmed that the noncontact surfaces caused the heat flux in the rod near both surfaces of the wick structure to concentrate,which increased the evaporation thermal resistance of the wick structure.A reduction in the noncontact surface area by increasing the wick width was found to be effective in decreasing the evaporation thermal resistance and increasing themaximumheat transfer rate of the wick structure.The separation of the wick structure increased the evaporation surface area.However,its effectiveness was limited when the heat transfer rate was small.展开更多
An ultra-thin flattened heat pipe has been developed with a centered wick structure.This structure is essential to make the heat pipe thinner.However,the centered wick structure reduces the evaporation and condensatio...An ultra-thin flattened heat pipe has been developed with a centered wick structure.This structure is essential to make the heat pipe thinner.However,the centered wick structure reduces the evaporation and condensation surface areas of the wick structure because it is sandwiched between heat pipe walls.In this study,because detailed discussion has not been made,heat transfer experiments were conducted for the wick structure sandwiched between two solid walls.This study focused on the evaporation heat transfer characteristics from the sandwiched wick structure.The experiments were conducted with three wick structures,that is,strip-shaped sintered copper powders with thicknesses of 0.5,1.0,and 1.5 mm.Water was used as working fluid.The capillary pumping performance,that is,the liquid lifting velocities of the three wick structures were the same.The experimental results of the three wick structures were compared regarding the relation between the evaporation heat transfer rate and the superheat of the working fluid.The heat transfer experiments were also conducted when one of the solid walls was removed from the wick structure.It was confirmed that even if the wick structure was sandwiched between the solid walls,sufficient evaporation of the working fluid occurred from the thin sides of the wick structure.展开更多
Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick,...Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick, and the subcooling in the compensation chamber (CC) on the thermal performance of the evaporator. A pore network model with a distribution of pore radii was used to simulate liquid flow in the porous structure of the wick. To obtain high accuracy, fine meshes were used at the boundaries among the casing, the wick, and the grooves. Distributions of temperature, pressure, and mass flow rate were compared for polytetra-fluoroethylene (PTFE) and stainless steel wicks. The thermal conductivity of the wick and the contact area between the casing and the wick significantly impacted thermal performance of the evaporator heat-transfer coefficient and the heat leak to the CC. The 3D analysis provided highly accurate values for the heat leak;in some cases, the heat leaks of PTFE and stainless steel wicks showed little differences. In general, the heat flux is concentrated at the boundaries between the casing, the wick, and the grooves;therefore, thermal performance can be optimized by increasing the length of the boundary.展开更多
An overall two-dimensional numerical model of the miniature flat plate capillary pumped loop (CPL) evaporator is developed to describe the liquid and vapor flow, heat transfer and phase change in the porous wick str...An overall two-dimensional numerical model of the miniature flat plate capillary pumped loop (CPL) evaporator is developed to describe the liquid and vapor flow, heat transfer and phase change in the porous wick structure, liquid flow and heat transfer in the compensation cavity and heat transfer in the vapor grooves and metallic wall. The entire evaporator is solved with SIMPLE algorithm as a conjugate problem. The effect of heat conduction of metallic side wall on the performance of miniature flat plate CPL evaporator is analyzed, and side wall effect heat transfer limit is introduced to estimate the performance of evaporator. The shape and location of vapor-liquid interface inside the wick are calculated and the influences of applied heat flux, liquid subcooling, wick material and metallic wall material on the evaporator performance are investigated in detail. The numerical results obtained are useful for the miniature flat plate evaporator performance optimization and design of CPL.展开更多
This paper presents the experimental investigation on the heat transfer chaxacteristics in inverted evaporator of Micro/Miniature Capillary Pumped Loop (MCPL). The evaporation heat transfer coefficients as a function ...This paper presents the experimental investigation on the heat transfer chaxacteristics in inverted evaporator of Micro/Miniature Capillary Pumped Loop (MCPL). The evaporation heat transfer coefficients as a function of the heat flux density, the geometrical sizes of capillary wick structure and the vapor grooves are shown. Qualitative analysis of the heat transfer characteristics of the inverted evaporator of MCPL is also made.展开更多
文摘Centered or striped wick structures have been used to develop ultrathin heat pipes.Differing from traditional heat pipes,the centered or striped wick structures leave noncontact container surfaces with the wick structure.In this study,experiments andnumerical analyseswere conductedtoinvestigate the influenceof thesenoncontact surfaces.In the experiments,a strip-shaped wick structure was placed vertically,the top was sandwiched between wider rods and the bottom was immersed in a working fluid.The rod width was greater than the wick width;thus,noncontact surfaces were left between the rod and the wick structure.The heat was applied from the rod to the wick structure,and the evaporation heat transfer characteristics of the working fluid from the wick structure were evaluated.Water was used as the working fluid.The experiments were conducted by varying the rod and wick widths.The experimental results were obtained when the wick structures were placed separately.In the numerical analyses,the temperature and heat flux distributions in the rod were obtained.From the experimental and numerical results,it was confirmed that the noncontact surfaces caused the heat flux in the rod near both surfaces of the wick structure to concentrate,which increased the evaporation thermal resistance of the wick structure.A reduction in the noncontact surface area by increasing the wick width was found to be effective in decreasing the evaporation thermal resistance and increasing themaximumheat transfer rate of the wick structure.The separation of the wick structure increased the evaporation surface area.However,its effectiveness was limited when the heat transfer rate was small.
文摘An ultra-thin flattened heat pipe has been developed with a centered wick structure.This structure is essential to make the heat pipe thinner.However,the centered wick structure reduces the evaporation and condensation surface areas of the wick structure because it is sandwiched between heat pipe walls.In this study,because detailed discussion has not been made,heat transfer experiments were conducted for the wick structure sandwiched between two solid walls.This study focused on the evaporation heat transfer characteristics from the sandwiched wick structure.The experiments were conducted with three wick structures,that is,strip-shaped sintered copper powders with thicknesses of 0.5,1.0,and 1.5 mm.Water was used as working fluid.The capillary pumping performance,that is,the liquid lifting velocities of the three wick structures were the same.The experimental results of the three wick structures were compared regarding the relation between the evaporation heat transfer rate and the superheat of the working fluid.The heat transfer experiments were also conducted when one of the solid walls was removed from the wick structure.It was confirmed that even if the wick structure was sandwiched between the solid walls,sufficient evaporation of the working fluid occurred from the thin sides of the wick structure.
文摘Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick, and the subcooling in the compensation chamber (CC) on the thermal performance of the evaporator. A pore network model with a distribution of pore radii was used to simulate liquid flow in the porous structure of the wick. To obtain high accuracy, fine meshes were used at the boundaries among the casing, the wick, and the grooves. Distributions of temperature, pressure, and mass flow rate were compared for polytetra-fluoroethylene (PTFE) and stainless steel wicks. The thermal conductivity of the wick and the contact area between the casing and the wick significantly impacted thermal performance of the evaporator heat-transfer coefficient and the heat leak to the CC. The 3D analysis provided highly accurate values for the heat leak;in some cases, the heat leaks of PTFE and stainless steel wicks showed little differences. In general, the heat flux is concentrated at the boundaries between the casing, the wick, and the grooves;therefore, thermal performance can be optimized by increasing the length of the boundary.
文摘An overall two-dimensional numerical model of the miniature flat plate capillary pumped loop (CPL) evaporator is developed to describe the liquid and vapor flow, heat transfer and phase change in the porous wick structure, liquid flow and heat transfer in the compensation cavity and heat transfer in the vapor grooves and metallic wall. The entire evaporator is solved with SIMPLE algorithm as a conjugate problem. The effect of heat conduction of metallic side wall on the performance of miniature flat plate CPL evaporator is analyzed, and side wall effect heat transfer limit is introduced to estimate the performance of evaporator. The shape and location of vapor-liquid interface inside the wick are calculated and the influences of applied heat flux, liquid subcooling, wick material and metallic wall material on the evaporator performance are investigated in detail. The numerical results obtained are useful for the miniature flat plate evaporator performance optimization and design of CPL.
文摘This paper presents the experimental investigation on the heat transfer chaxacteristics in inverted evaporator of Micro/Miniature Capillary Pumped Loop (MCPL). The evaporation heat transfer coefficients as a function of the heat flux density, the geometrical sizes of capillary wick structure and the vapor grooves are shown. Qualitative analysis of the heat transfer characteristics of the inverted evaporator of MCPL is also made.