Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions...Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.展开更多
China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exi...China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.展开更多
The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel indu...The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.展开更多
In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was construc...In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was constructed to evaluate the carbon emission risks of the construction industry in Hebei Province,China from 2005 to 2020.The results are shown as follows:(1)The overall carbon emissions of the construction industry in Hebei Province of China showed an inverted"V"-shaped evolution trend during the past 16 years.Tangshan and Shijiazhuang maintained high carbon emissions,while Langfang,Hengshui and Baoding saw rapid increases in carbon emissions.(2)The environmental safety threshold of carbon emission from the construction industry in Hebei Province,China,has been continuously improved,and the provincial environmental safety threshold is between 9475080-23144760 tons;The environmental safety threshold was the highest in Baoding and Langfang,and the lowest in Xingtai.(3)In the past 16 years,the carbon emission risk of the construction industry in Hebei Province of China has been in a state of extremely serious risk,and the risk index generally presents an inverted"V"type trend.(4)The carbon emission risk of Hebei city in China presents a spatial pattern of"high in the south and low in the north",which goes through two stages:risk increase period and risk reduction period.展开更多
Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in ...Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in 30 provinces in China,and then used the Dagum Gini coefficient and its decomposition method to explore the regional differences and sources of carbon emissions of the construction industry in China.The results show that the carbon emissions of construction industry in China generally show an upward trend,and there are significant differences in carbon emissions of construction industry among provinces,and the main source of regional differences is inter-regional differences.However,the contribution rate of inter-regional differences showed a significant downward trend,while the contribution rate of hyperbolic density increased day by day,and the contribution rate of intra-regional differences increased slightly.The results of this study will provide a reference for China to formulate more reasonable carbon emission reduction targets and differentiation strategies for the construction industry.展开更多
The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI...The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI’s carbon emissions. Therefore, in the context of global low-carbon economy and emission reduction requirements, low-carbon smelting technology in the ISI has attracted increasingly more attention in China. This review summarizes the current status of carbon emissions and energy consumption in China’s ISI and discusses the development status and prospects of low-carbon ironmaking technology. The main route to effectively reducing carbon emissions is to develop a gas-based direct reduction process and replace sintering with pelletizing, both of which focus on developing pelletizing technology. However,the challenge of pelletizing process development is to obtain high-quality iron concentrates. Consequently, the present paper also summarizes the development status of China’s mineral processing technology, including fine-grained mineral processing technology, magnetization roasting technology, and flotation collector application. This paper aims to provide a theoretical basis for the low-carbon development of China’s ISI in terms of a dressing–smelting combination.展开更多
This paper uses the mediation effect and a spatial panel model using panel data from 30 provinces in China from 2011 to 2019 to study the relationship between the digital economy,industrial structure,and carbon emissi...This paper uses the mediation effect and a spatial panel model using panel data from 30 provinces in China from 2011 to 2019 to study the relationship between the digital economy,industrial structure,and carbon emission.The research results show that the development of digital economy can effectively promote the reduction of carbon emissions.The development of the digital economy has a significant role in promoting the rationalization of the industrial structure.The digital economy not only directly suppresses carbon emissions,but also indirectly has a significant inhibitory effect on carbon emissions by promoting the rationalization and improvement of the industrial structure.The development of the digital economy suppresses the optimization of the industrial structure.The improvement of industrialization has hindered the industrialization process.It is necessary to strengthen research and development into digital technology and enhance the capacity of the digital economy to promote carbon emissions reduction.展开更多
Based on the input-output data from the World Input-Output Database( WIOD),the global value chain( GVC) position of China's manufacturing industry from 2003 to 2014 was calculated,and the relationship between the ...Based on the input-output data from the World Input-Output Database( WIOD),the global value chain( GVC) position of China's manufacturing industry from 2003 to 2014 was calculated,and the relationship between the carbon emissions and global value chain position of China's manufacturing industry was studied based on the improved STIRPAT model. The results show that the improvement of global value chain position could significantly reduce the carbon emissions of China's manufacturing industry. In addition,foreign investment and energy structure hindered the low-carbon development of China's manufacturing industry. The effects of population size and research intensity on the carbon emissions of manufacturing industry were not significant. In the process of participating in the global value chain,China's manufacturing industry should effectively reduce carbon emissions by strengthening environmental regulation,optimizing energy structure and improving production technology.展开更多
With frequent disastrous weathers and increasingly prominent GHG effects in recent years, normal existence and development of mankind are facing unprecedented threats and challenges. GHG emissions mitigation for the g...With frequent disastrous weathers and increasingly prominent GHG effects in recent years, normal existence and development of mankind are facing unprecedented threats and challenges. GHG emissions mitigation for the global climate changes has been the focus of concern of the world. As the biggest developing country and the second largest country of carbon-emission, China attaches importance to the carbon emission reduction. The major GHG component is carbon dioxide and in China, the emis- sion of carbon dioxide is mainly from industrial production. In the paper, the status and trend of Coz emission from industrial departments, high-carbon emission and its specific industries are shown in statistics. Meanwhile, the policy environment, industrial organization structure and technology of carbon high emission are all discussed based on practical situations in these departments and industries. At the end, through the analysis of gray correlation, correlativity is explored for both fossil energy consumption and total carbon emission, and also for the production value and carbon emission of each industrial sector. Some policy proposals for the establishment of low-carbon industries and transition of economic development pattern are set forth.展开更多
An in-depth study of the energy related carbon emissions has important practical significance for carbon emissions reduction and structural adjustment in Shandong Province and throughout China.Based on the perspective...An in-depth study of the energy related carbon emissions has important practical significance for carbon emissions reduction and structural adjustment in Shandong Province and throughout China.Based on the perspective of industrial structure,the expanded KAYA equation to measure the energy related carbon emissions of the primary industries(Resources and Agriculture)and secondary industries(Manufacturing and Construction)and tertiary industries(Retail and Service)was utilized in Shandong Province from 2011 to 2017.The carbon emissions among industries in Shandong Province were empirically analyzed using the Logarithmic Mean Divisia Index decomposition approach.The results were follows:(1)Under the three industrial dimensions,the energy structure effect and the energy intensity effect have a restraining influence on the carbon emissions of the three industries.(2)The development level effect and the employment scale effect play a pulling role in carbon emissions.(3)From the perspective of the employment structure effect of the primary industry,there is a restraining effect on carbon emissions,while the employment structure effects of the secondary and tertiary industries play a pulling role in carbon emissions,and the employment structure effect of the tertiary industry has a greater pulling effect on carbon emissions than the secondary industry.展开更多
Confronting the contradiction between the rapid development of economy and the effective protection of environment, and developing low carbon economy by optimizing the industrial structure have become one of the effec...Confronting the contradiction between the rapid development of economy and the effective protection of environment, and developing low carbon economy by optimizing the industrial structure have become one of the effective way to attract more attention. In the paper, we made a research on the correlation between china's three main industries and carbon emission intensity to find out the main factors which affect the intensity of carbon emission in China by measuring the gross emission in china's 28 main provinces in 2003-2013 and using Grey correlation analysis based on the change tendency. The results indicate that the second industry has the largest correlation with carbon emission intensity; the tertiary industry helps reduce the intensity of carbon emission, but it is not very obvious; the first industry has the least impact on carbon emission intensity. In the last part, according to the characteristics of industrial structure and carbon emission, we put forward the suggestions and strategies on the adjustment of china's industrial structure in future with the results analysis.展开更多
This paper calculates the industrial carbon emissions of the Yangtze River Delta urban agglomeration over the period 2006-2013. An empirical analysis is conducted to find out the influencing factors of industrial carb...This paper calculates the industrial carbon emissions of the Yangtze River Delta urban agglomeration over the period 2006-2013. An empirical analysis is conducted to find out the influencing factors of industrial carbon emissions of the Yangtze River Delta urban agglomeration, using a spatial Durbin panel model. The results show that cities with larger industrial carbon emissions often enjoy low annual growth rates, while the cities with smaller ones enjoy higher annual growth rate; There exists a comparatively strong positive correlation in space in per capita carbon emission; urbanization, and total population. GDP per capita and international trade are the main influencing factors of industrial carbon emissions; There are spatial spillover effects on international trade and urbanization of neighboring cities, which have a significant impact on local industrial carbon emissions.展开更多
This study uses an input-output model presenting the embodied carbon emission in the importexport procedure, as well as the responsibility allocation between China's 35 sectors and 7 main trade partners from 1995 ...This study uses an input-output model presenting the embodied carbon emission in the importexport procedure, as well as the responsibility allocation between China's 35 sectors and 7 main trade partners from 1995 to 2011. Results indicate that the amount of carbon emissions in China's industrial sectors is immense and that the industrial sectors are in serious imbalance. Such imbalance exists mainly in textiles, basic and fabricated metal, electrical and optical equipment,and machinery, among others. Based on the consumer-responsibility principle, the responsibility of 29 departments is reduced. Correspondingly, foreign sectors become more responsible.America, as China's largest trading partner, should account for most of the total responsibility,followed by developed countries such as Japan, South Korea, and Germany.展开更多
The study scrutinized correlation between electricity production,trade,economic growth,industrialization and carbon dioxide emissions in Ghana.Our study disaggregated trade into export and import to spell out distinct...The study scrutinized correlation between electricity production,trade,economic growth,industrialization and carbon dioxide emissions in Ghana.Our study disaggregated trade into export and import to spell out distinctive and individual variable contribution to emissions in Ghana.In an attempt to investigate,the study used time-series data set of World Development Indicators from 1971 to 2014.By means of Autoregressive Distributed Lag(ARDL)cointegrating technique,study established that variables are co-integrated and have long-run equilibrium relationship.Results of long-term effect of explanatory variables on carbon dioxide emissions indicated that 1%each increase of economic growth and industrialization,will cause an increase of emissions by 16.9%and 79%individually whiles each increase of 1%of electricity production,trade exports,trade imports,will cause a decrease in carbon dioxide emissions by 80.3%,27.7%and 4.1%correspondingly.In the pursuit of carbon emissions’mitigation and achievement of Sustainable Development Goal(SDG)13,Ghana need to increase electricity production and trade exports.展开更多
Green and low-carbon is a new development model that seeks balance between environmental sustainability and high economic growth.If explainable and available carbon emission data can be accurately obtained,it will hel...Green and low-carbon is a new development model that seeks balance between environmental sustainability and high economic growth.If explainable and available carbon emission data can be accurately obtained,it will help policy regulators and enterprise managers to more accurately implement this development strategy.A lot of research has been carried out,but it is still a difficult problem that how to accommodate and adapt the complex carbon emission data computing models and factor libraries developed by different regions,different industries and different enterprises.Meanwhile,with the rapid development of the Industrial Internet,it has not only been used for the supply chain optimization and intelligent scheduling of the manufacturing industry,but also been used by more and more industries as an important way of digital transformation.Especially in China,the Industrial Internet identification and resolution system is becoming an important digital infrastructure to uniquely identify objects and share data.Hence,a compatible carbon efficiency information service framework based on the Industrial Internet Identification is proposed in this paper to address the problem of computing and querying multi-source heterogeneous carbon emission data.We have defined a multi cooperation carbon emission data interaction model consisting of three roles and three basic operations.Further,the implementation of the framework includes carbon emission data identification,modeling,calculation,query and sharing.The practice results show that its capability and effectiveness in improving the responsiveness,accuracy,and credibility of compatible carbon efficiency data query and sharing services.展开更多
Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissi...Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissions in the Xuzhou Metropolitan Area from 2000 to 2014, with a focus on their relationships and driving factors. Our research indicates that carbon emission intensity from industrial structures in the Xuzhou Metropolitan Area at first showed an increasing trend, which then decreased. Furthermore, the relationship between emissions and industrial economic growth has been trending toward absolute decoupling. From the perspective of the center-periphery, the Xuzhou Metropolitan Area formed a concentric pattern, where both progress towards low emissions and the level of technological advancement gradually diminished from the center to the periphery. In terms of variation across provinces, the ISCB index in the eastern Henan has decreased the slowest, followed by the southern Shandong and the northern Anhui, with the northern Jiangsu ranking last. During this period, resource-and labor-intensive industries were the primary growth industries in the northern Anhui and the eastern Henan, while labor-intensive industries dominated the southern Shandong and capital-intensive industries dominated the northern Jiangsu. In terms of city types, the spatial pattern for industrial structure indicates that recession resource-based cities had higher carbon emission intensities than mature resource-based cities, followed by non-resource-based cities and regenerative resource-based cities. Generally, the industrial structure in the Xuzhou Metropolitan Area has transformed from being resource-intensive to capital-intensive, and has been trending toward technology-intensive as resource availability has been exploited to exhaustion and then been regenerated. Industrial structure has been the leading factor causing heterogeneity of carbon emission intensities between metropolitan cities. Therefore, the key to optimizing the industrial structure and layout of metropolitan areas is to promote industrial structure transformation and improve the system controlling collaborative industrial development between cities.展开更多
In the case of carbon emission tax,implementation target and effect of carbon emission tax are analyzed. For development status of Chinese coal chemical industry,carbon emission data of traditional and new coal chemic...In the case of carbon emission tax,implementation target and effect of carbon emission tax are analyzed. For development status of Chinese coal chemical industry,carbon emission data of traditional and new coal chemical industries are contrasted and analyzed,and the impact of levying carbon emission tax on coal chemical industry is studied. Promotion implementation opinions of carbon emission tax in coal chemical industry are proposed,and coordinated development between China environmental taxation system and relevant industries is further explored.展开更多
This paper uses an input-output table of China's provinces(2007-2016) to measure carbon emissions of these industries.It employs a Malmquist-Luenberger(ML) index with expected and undesired outputs,and an absolute...This paper uses an input-output table of China's provinces(2007-2016) to measure carbon emissions of these industries.It employs a Malmquist-Luenberger(ML) index with expected and undesired outputs,and an absolute β convergence and a conditional β convergence model,to conduct an in-depth analysis of dynamic changes and spatial convergence.Carbon emission efficiency of forest processing industries in 25 regions,including Shanghai,Chongqing,Zhejiang,and Jiangsu are increasing,whereas those of Tianjin,Liaoning,Heilongjiang,and Tibet are decreasing.The main contributing factors of carbon emission efficiency in three major regions vary over time.Further,carbon emission efficiency in the eastern,central,and western regions all have absolute β convergence and conditional β convergence,indicating that different regions are developing toward their own goals and industry,yet regions with lower efficiency are catching up with those where with more efficient strategies in place.Finally,this paper proposes according recommendations.展开更多
The paper measures the total carbon emissions and carbon emission intensity of different Chinese provinces between 2000 and 2012,then analyses the spatial features and dynamic evolution of carbon emission intensity th...The paper measures the total carbon emissions and carbon emission intensity of different Chinese provinces between 2000 and 2012,then analyses the spatial features and dynamic evolution of carbon emission intensity through exploratory spatial data analysis,to explore its clustering characteristics of spatial and temporal distribution and dynamic evolution.The effect of industrial agglomeration on the carbon emission intensity in China is estimated by using spatial econometric model.According to the research,three new findings are revealed as follows:firstly,inter-provincial carbon emission intensity in middle-west and northeast areas is much higher than southeast areas in China.Secondly,the spatial domain dependence and difference of China's inter-provincial carbon intensity exist simultaneously.Thirdly,the elastic coefficient of carbon intensity for industrial agglomeration change is between-0.228%and-0.37%.On the basis of these conclusions,the paper will put forward several policy recommendations according to empirical study.展开更多
In order to achieve the development goals of emission peak in 2030 and carbon neutrality in 2060,carbon reduction measures should be implemented in the whole industrial chain.Based on the existing research,the basic l...In order to achieve the development goals of emission peak in 2030 and carbon neutrality in 2060,carbon reduction measures should be implemented in the whole industrial chain.Based on the existing research,the basic logic of carbon reduction in the industrial chain is analyzed,and then the specific strategies for carbon reduction in the industrial chain are proposed,including:reducing the use of fossil energy and vigorously developing the new energy industry;reducing carbon through energy conservation,industrial upgrading,development of circular economy,and application of carbon capture technology;reducing carbon through low-carbon transformation of logistics industry,innovation of trading methods,and promotion of low-carbon green consumption.The external guarantee system for carbon reduction includes the introduction of relevant policies,laws and regulations,and the use of carbon emission trading mechanism.展开更多
基金supported by the National Key Research and Development Program of China(2019YFC1904800)the National Natural Science Foundation of China(72274105).
文摘Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.
基金Under the auspices of the Philosophy and Social Science Planning Project of Guizhou,China(No.21GZZD59)。
文摘China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.
文摘The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.
基金supported by the Hebei Social Science Foundation Project(Grant No.HB20YJ018)2023 Hebei Province Social Science Development Research Project(Grant No.20230103005)Education Department of Hebei Province Graduate Student Innovation Ability Training Funding Project(Grant No.CXZZSS2023130).
文摘In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was constructed to evaluate the carbon emission risks of the construction industry in Hebei Province,China from 2005 to 2020.The results are shown as follows:(1)The overall carbon emissions of the construction industry in Hebei Province of China showed an inverted"V"-shaped evolution trend during the past 16 years.Tangshan and Shijiazhuang maintained high carbon emissions,while Langfang,Hengshui and Baoding saw rapid increases in carbon emissions.(2)The environmental safety threshold of carbon emission from the construction industry in Hebei Province,China,has been continuously improved,and the provincial environmental safety threshold is between 9475080-23144760 tons;The environmental safety threshold was the highest in Baoding and Langfang,and the lowest in Xingtai.(3)In the past 16 years,the carbon emission risk of the construction industry in Hebei Province of China has been in a state of extremely serious risk,and the risk index generally presents an inverted"V"type trend.(4)The carbon emission risk of Hebei city in China presents a spatial pattern of"high in the south and low in the north",which goes through two stages:risk increase period and risk reduction period.
基金Supported by School-level Natural Science Project of Jiangxi University of Technology(232ZRYB02).
文摘Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in 30 provinces in China,and then used the Dagum Gini coefficient and its decomposition method to explore the regional differences and sources of carbon emissions of the construction industry in China.The results show that the carbon emissions of construction industry in China generally show an upward trend,and there are significant differences in carbon emissions of construction industry among provinces,and the main source of regional differences is inter-regional differences.However,the contribution rate of inter-regional differences showed a significant downward trend,while the contribution rate of hyperbolic density increased day by day,and the contribution rate of intra-regional differences increased slightly.The results of this study will provide a reference for China to formulate more reasonable carbon emission reduction targets and differentiation strategies for the construction industry.
基金financially supported by the Natural Science Foundation China (No.52274343)the Youth Natural Science Foundation China (No.51904347)the China Baowu Low Carbon Metallurgy Innovation Foundation (No.BWLCF202102)。
文摘The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI’s carbon emissions. Therefore, in the context of global low-carbon economy and emission reduction requirements, low-carbon smelting technology in the ISI has attracted increasingly more attention in China. This review summarizes the current status of carbon emissions and energy consumption in China’s ISI and discusses the development status and prospects of low-carbon ironmaking technology. The main route to effectively reducing carbon emissions is to develop a gas-based direct reduction process and replace sintering with pelletizing, both of which focus on developing pelletizing technology. However,the challenge of pelletizing process development is to obtain high-quality iron concentrates. Consequently, the present paper also summarizes the development status of China’s mineral processing technology, including fine-grained mineral processing technology, magnetization roasting technology, and flotation collector application. This paper aims to provide a theoretical basis for the low-carbon development of China’s ISI in terms of a dressing–smelting combination.
文摘This paper uses the mediation effect and a spatial panel model using panel data from 30 provinces in China from 2011 to 2019 to study the relationship between the digital economy,industrial structure,and carbon emission.The research results show that the development of digital economy can effectively promote the reduction of carbon emissions.The development of the digital economy has a significant role in promoting the rationalization of the industrial structure.The digital economy not only directly suppresses carbon emissions,but also indirectly has a significant inhibitory effect on carbon emissions by promoting the rationalization and improvement of the industrial structure.The development of the digital economy suppresses the optimization of the industrial structure.The improvement of industrialization has hindered the industrialization process.It is necessary to strengthen research and development into digital technology and enhance the capacity of the digital economy to promote carbon emissions reduction.
基金Supported by the National Social Science Foundation of China(14BJL081)National Natural Science Foundation of China(41771173)
文摘Based on the input-output data from the World Input-Output Database( WIOD),the global value chain( GVC) position of China's manufacturing industry from 2003 to 2014 was calculated,and the relationship between the carbon emissions and global value chain position of China's manufacturing industry was studied based on the improved STIRPAT model. The results show that the improvement of global value chain position could significantly reduce the carbon emissions of China's manufacturing industry. In addition,foreign investment and energy structure hindered the low-carbon development of China's manufacturing industry. The effects of population size and research intensity on the carbon emissions of manufacturing industry were not significant. In the process of participating in the global value chain,China's manufacturing industry should effectively reduce carbon emissions by strengthening environmental regulation,optimizing energy structure and improving production technology.
文摘With frequent disastrous weathers and increasingly prominent GHG effects in recent years, normal existence and development of mankind are facing unprecedented threats and challenges. GHG emissions mitigation for the global climate changes has been the focus of concern of the world. As the biggest developing country and the second largest country of carbon-emission, China attaches importance to the carbon emission reduction. The major GHG component is carbon dioxide and in China, the emis- sion of carbon dioxide is mainly from industrial production. In the paper, the status and trend of Coz emission from industrial departments, high-carbon emission and its specific industries are shown in statistics. Meanwhile, the policy environment, industrial organization structure and technology of carbon high emission are all discussed based on practical situations in these departments and industries. At the end, through the analysis of gray correlation, correlativity is explored for both fossil energy consumption and total carbon emission, and also for the production value and carbon emission of each industrial sector. Some policy proposals for the establishment of low-carbon industries and transition of economic development pattern are set forth.
基金supported by the National Natural Science Foundation of China under Grants 71804089 and 71771138Humanities and Social Sciences Youth Foundation of Ministry of Education of China under Grants 18YJCZH034 and 19YJC790128+2 种基金Jiangsu Post-doctoral Research Funding Plan(2018K195C)Natural Science Foundation of Shandong Province,China under Grant ZR2018LG003Social Science Planning Project Foundation of Shandong Province,China under Grant 16CGLJ09.
文摘An in-depth study of the energy related carbon emissions has important practical significance for carbon emissions reduction and structural adjustment in Shandong Province and throughout China.Based on the perspective of industrial structure,the expanded KAYA equation to measure the energy related carbon emissions of the primary industries(Resources and Agriculture)and secondary industries(Manufacturing and Construction)and tertiary industries(Retail and Service)was utilized in Shandong Province from 2011 to 2017.The carbon emissions among industries in Shandong Province were empirically analyzed using the Logarithmic Mean Divisia Index decomposition approach.The results were follows:(1)Under the three industrial dimensions,the energy structure effect and the energy intensity effect have a restraining influence on the carbon emissions of the three industries.(2)The development level effect and the employment scale effect play a pulling role in carbon emissions.(3)From the perspective of the employment structure effect of the primary industry,there is a restraining effect on carbon emissions,while the employment structure effects of the secondary and tertiary industries play a pulling role in carbon emissions,and the employment structure effect of the tertiary industry has a greater pulling effect on carbon emissions than the secondary industry.
文摘Confronting the contradiction between the rapid development of economy and the effective protection of environment, and developing low carbon economy by optimizing the industrial structure have become one of the effective way to attract more attention. In the paper, we made a research on the correlation between china's three main industries and carbon emission intensity to find out the main factors which affect the intensity of carbon emission in China by measuring the gross emission in china's 28 main provinces in 2003-2013 and using Grey correlation analysis based on the change tendency. The results indicate that the second industry has the largest correlation with carbon emission intensity; the tertiary industry helps reduce the intensity of carbon emission, but it is not very obvious; the first industry has the least impact on carbon emission intensity. In the last part, according to the characteristics of industrial structure and carbon emission, we put forward the suggestions and strategies on the adjustment of china's industrial structure in future with the results analysis.
基金supported by National Natural Science Foundation of China (Grant No.71373079)Planning Projects of Philosophy and Social Science of Zhejiang Province (Grant No. 11YD07Z)
文摘This paper calculates the industrial carbon emissions of the Yangtze River Delta urban agglomeration over the period 2006-2013. An empirical analysis is conducted to find out the influencing factors of industrial carbon emissions of the Yangtze River Delta urban agglomeration, using a spatial Durbin panel model. The results show that cities with larger industrial carbon emissions often enjoy low annual growth rates, while the cities with smaller ones enjoy higher annual growth rate; There exists a comparatively strong positive correlation in space in per capita carbon emission; urbanization, and total population. GDP per capita and international trade are the main influencing factors of industrial carbon emissions; There are spatial spillover effects on international trade and urbanization of neighboring cities, which have a significant impact on local industrial carbon emissions.
基金the National Social Science Fund of China:"Comparison and Coping Strategies of China's Carbon Emission Reduction Responsibility under Different Carbon Emission Responsibility Principles":[Grant Number 15BGJ054]the Humanities and Social Science Foundation of the Ministry of Education of China:"Research on the Calculations and Countermeasures of China's Foreign Trade Embodied Carbon Emission":[Grant Number13YJAZH122]
文摘This study uses an input-output model presenting the embodied carbon emission in the importexport procedure, as well as the responsibility allocation between China's 35 sectors and 7 main trade partners from 1995 to 2011. Results indicate that the amount of carbon emissions in China's industrial sectors is immense and that the industrial sectors are in serious imbalance. Such imbalance exists mainly in textiles, basic and fabricated metal, electrical and optical equipment,and machinery, among others. Based on the consumer-responsibility principle, the responsibility of 29 departments is reduced. Correspondingly, foreign sectors become more responsible.America, as China's largest trading partner, should account for most of the total responsibility,followed by developed countries such as Japan, South Korea, and Germany.
文摘The study scrutinized correlation between electricity production,trade,economic growth,industrialization and carbon dioxide emissions in Ghana.Our study disaggregated trade into export and import to spell out distinctive and individual variable contribution to emissions in Ghana.In an attempt to investigate,the study used time-series data set of World Development Indicators from 1971 to 2014.By means of Autoregressive Distributed Lag(ARDL)cointegrating technique,study established that variables are co-integrated and have long-run equilibrium relationship.Results of long-term effect of explanatory variables on carbon dioxide emissions indicated that 1%each increase of economic growth and industrialization,will cause an increase of emissions by 16.9%and 79%individually whiles each increase of 1%of electricity production,trade exports,trade imports,will cause a decrease in carbon dioxide emissions by 80.3%,27.7%and 4.1%correspondingly.In the pursuit of carbon emissions’mitigation and achievement of Sustainable Development Goal(SDG)13,Ghana need to increase electricity production and trade exports.
基金supported by the 2018 Industrial Internet Innovation and Development Project——Industrial Internet Identification Resolution Sys⁃tem:National Top-Level Node Construction Project(Phase I).
文摘Green and low-carbon is a new development model that seeks balance between environmental sustainability and high economic growth.If explainable and available carbon emission data can be accurately obtained,it will help policy regulators and enterprise managers to more accurately implement this development strategy.A lot of research has been carried out,but it is still a difficult problem that how to accommodate and adapt the complex carbon emission data computing models and factor libraries developed by different regions,different industries and different enterprises.Meanwhile,with the rapid development of the Industrial Internet,it has not only been used for the supply chain optimization and intelligent scheduling of the manufacturing industry,but also been used by more and more industries as an important way of digital transformation.Especially in China,the Industrial Internet identification and resolution system is becoming an important digital infrastructure to uniquely identify objects and share data.Hence,a compatible carbon efficiency information service framework based on the Industrial Internet Identification is proposed in this paper to address the problem of computing and querying multi-source heterogeneous carbon emission data.We have defined a multi cooperation carbon emission data interaction model consisting of three roles and three basic operations.Further,the implementation of the framework includes carbon emission data identification,modeling,calculation,query and sharing.The practice results show that its capability and effectiveness in improving the responsiveness,accuracy,and credibility of compatible carbon efficiency data query and sharing services.
基金Under the auspices of the National Natural Science Foundation of China(No.41371146,41671123)National Social Science Foundation of China(No.13BJY067)
文摘Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissions in the Xuzhou Metropolitan Area from 2000 to 2014, with a focus on their relationships and driving factors. Our research indicates that carbon emission intensity from industrial structures in the Xuzhou Metropolitan Area at first showed an increasing trend, which then decreased. Furthermore, the relationship between emissions and industrial economic growth has been trending toward absolute decoupling. From the perspective of the center-periphery, the Xuzhou Metropolitan Area formed a concentric pattern, where both progress towards low emissions and the level of technological advancement gradually diminished from the center to the periphery. In terms of variation across provinces, the ISCB index in the eastern Henan has decreased the slowest, followed by the southern Shandong and the northern Anhui, with the northern Jiangsu ranking last. During this period, resource-and labor-intensive industries were the primary growth industries in the northern Anhui and the eastern Henan, while labor-intensive industries dominated the southern Shandong and capital-intensive industries dominated the northern Jiangsu. In terms of city types, the spatial pattern for industrial structure indicates that recession resource-based cities had higher carbon emission intensities than mature resource-based cities, followed by non-resource-based cities and regenerative resource-based cities. Generally, the industrial structure in the Xuzhou Metropolitan Area has transformed from being resource-intensive to capital-intensive, and has been trending toward technology-intensive as resource availability has been exploited to exhaustion and then been regenerated. Industrial structure has been the leading factor causing heterogeneity of carbon emission intensities between metropolitan cities. Therefore, the key to optimizing the industrial structure and layout of metropolitan areas is to promote industrial structure transformation and improve the system controlling collaborative industrial development between cities.
文摘In the case of carbon emission tax,implementation target and effect of carbon emission tax are analyzed. For development status of Chinese coal chemical industry,carbon emission data of traditional and new coal chemical industries are contrasted and analyzed,and the impact of levying carbon emission tax on coal chemical industry is studied. Promotion implementation opinions of carbon emission tax in coal chemical industry are proposed,and coordinated development between China environmental taxation system and relevant industries is further explored.
文摘This paper uses an input-output table of China's provinces(2007-2016) to measure carbon emissions of these industries.It employs a Malmquist-Luenberger(ML) index with expected and undesired outputs,and an absolute β convergence and a conditional β convergence model,to conduct an in-depth analysis of dynamic changes and spatial convergence.Carbon emission efficiency of forest processing industries in 25 regions,including Shanghai,Chongqing,Zhejiang,and Jiangsu are increasing,whereas those of Tianjin,Liaoning,Heilongjiang,and Tibet are decreasing.The main contributing factors of carbon emission efficiency in three major regions vary over time.Further,carbon emission efficiency in the eastern,central,and western regions all have absolute β convergence and conditional β convergence,indicating that different regions are developing toward their own goals and industry,yet regions with lower efficiency are catching up with those where with more efficient strategies in place.Finally,this paper proposes according recommendations.
文摘The paper measures the total carbon emissions and carbon emission intensity of different Chinese provinces between 2000 and 2012,then analyses the spatial features and dynamic evolution of carbon emission intensity through exploratory spatial data analysis,to explore its clustering characteristics of spatial and temporal distribution and dynamic evolution.The effect of industrial agglomeration on the carbon emission intensity in China is estimated by using spatial econometric model.According to the research,three new findings are revealed as follows:firstly,inter-provincial carbon emission intensity in middle-west and northeast areas is much higher than southeast areas in China.Secondly,the spatial domain dependence and difference of China's inter-provincial carbon intensity exist simultaneously.Thirdly,the elastic coefficient of carbon intensity for industrial agglomeration change is between-0.228%and-0.37%.On the basis of these conclusions,the paper will put forward several policy recommendations according to empirical study.
文摘In order to achieve the development goals of emission peak in 2030 and carbon neutrality in 2060,carbon reduction measures should be implemented in the whole industrial chain.Based on the existing research,the basic logic of carbon reduction in the industrial chain is analyzed,and then the specific strategies for carbon reduction in the industrial chain are proposed,including:reducing the use of fossil energy and vigorously developing the new energy industry;reducing carbon through energy conservation,industrial upgrading,development of circular economy,and application of carbon capture technology;reducing carbon through low-carbon transformation of logistics industry,innovation of trading methods,and promotion of low-carbon green consumption.The external guarantee system for carbon reduction includes the introduction of relevant policies,laws and regulations,and the use of carbon emission trading mechanism.