Guided by relevant learning theories and based on the analysis of the attributes of captioned video, the Chinese ESL learners' characteristics and the characteristics of ESL learning itself, the paper tries to propos...Guided by relevant learning theories and based on the analysis of the attributes of captioned video, the Chinese ESL learners' characteristics and the characteristics of ESL learning itself, the paper tries to propose a model of integrating captioned video in ESL acquisition process. The model focuses on the feasibility of using captioned video to facilitate or support ESL learning.展开更多
In the video captioning methods based on an encoder-decoder,limited visual features are extracted by an encoder,and a natural sentence of the video content is generated using a decoder.However,this kind ofmethod is de...In the video captioning methods based on an encoder-decoder,limited visual features are extracted by an encoder,and a natural sentence of the video content is generated using a decoder.However,this kind ofmethod is dependent on a single video input source and few visual labels,and there is a problem with semantic alignment between video contents and generated natural sentences,which are not suitable for accurately comprehending and describing the video contents.To address this issue,this paper proposes a video captioning method by semantic topic-guided generation.First,a 3D convolutional neural network is utilized to extract the spatiotemporal features of videos during the encoding.Then,the semantic topics of video data are extracted using the visual labels retrieved from similar video data.In the decoding,a decoder is constructed by combining a novel Enhance-TopK sampling algorithm with a Generative Pre-trained Transformer-2 deep neural network,which decreases the influence of“deviation”in the semantic mapping process between videos and texts by jointly decoding a baseline and semantic topics of video contents.During this process,the designed Enhance-TopK sampling algorithm can alleviate a long-tail problem by dynamically adjusting the probability distribution of the predicted words.Finally,the experiments are conducted on two publicly used Microsoft Research Video Description andMicrosoft Research-Video to Text datasets.The experimental results demonstrate that the proposed method outperforms several state-of-art approaches.Specifically,the performance indicators Bilingual Evaluation Understudy,Metric for Evaluation of Translation with Explicit Ordering,Recall Oriented Understudy for Gisting Evaluation-longest common subsequence,and Consensus-based Image Description Evaluation of the proposed method are improved by 1.2%,0.1%,0.3%,and 2.4% on the Microsoft Research Video Description dataset,and 0.1%,1.0%,0.1%,and 2.8% on the Microsoft Research-Video to Text dataset,respectively,compared with the existing video captioning methods.As a result,the proposed method can generate video captioning that is more closely aligned with human natural language expression habits.展开更多
Video description generates natural language sentences that describe the subject,verb,and objects of the targeted Video.The video description has been used to help visually impaired people to understand the content.It...Video description generates natural language sentences that describe the subject,verb,and objects of the targeted Video.The video description has been used to help visually impaired people to understand the content.It is also playing an essential role in devolving human-robot interaction.The dense video description is more difficult when compared with simple Video captioning because of the object’s interactions and event overlapping.Deep learning is changing the shape of computer vision(CV)technologies and natural language processing(NLP).There are hundreds of deep learning models,datasets,and evaluations that can improve the gaps in current research.This article filled this gap by evaluating some state-of-the-art approaches,especially focusing on deep learning and machine learning for video caption in a dense environment.In this article,some classic techniques concerning the existing machine learning were reviewed.And provides deep learning models,a detail of benchmark datasets with their respective domains.This paper reviews various evaluation metrics,including Bilingual EvaluationUnderstudy(BLEU),Metric for Evaluation of Translation with Explicit Ordering(METEOR),WordMover’s Distance(WMD),and Recall-Oriented Understudy for Gisting Evaluation(ROUGE)with their pros and cons.Finally,this article listed some future directions and proposed work for context enhancement using key scene extraction with object detection in a particular frame.Especially,how to improve the context of video description by analyzing key frames detection through morphological image analysis.Additionally,the paper discusses a novel approach involving sentence reconstruction and context improvement through key frame object detection,which incorporates the fusion of large languagemodels for refining results.The ultimate results arise fromenhancing the generated text of the proposedmodel by improving the predicted text and isolating objects using various keyframes.These keyframes identify dense events occurring in the video sequence.展开更多
Currently,the video captioning models based on an encoder-decoder mainly rely on a single video input source.The contents of video captioning are limited since few studies employed external corpus information to guide...Currently,the video captioning models based on an encoder-decoder mainly rely on a single video input source.The contents of video captioning are limited since few studies employed external corpus information to guide the generation of video captioning,which is not conducive to the accurate descrip-tion and understanding of video content.To address this issue,a novel video captioning method guided by a sentence retrieval generation network(ED-SRG)is proposed in this paper.First,a ResNeXt network model,an efficient convolutional network for online video understanding(ECO)model,and a long short-term memory(LSTM)network model are integrated to construct an encoder-decoder,which is utilized to extract the 2D features,3D features,and object features of video data respectively.These features are decoded to generate textual sentences that conform to video content for sentence retrieval.Then,a sentence-transformer network model is employed to retrieve different sentences in an external corpus that are semantically similar to the above textual sentences.The candidate sentences are screened out through similarity measurement.Finally,a novel GPT-2 network model is constructed based on GPT-2 network structure.The model introduces a designed random selector to randomly select predicted words with a high probability in the corpus,which is used to guide and generate textual sentences that are more in line with human natural language expressions.The proposed method in this paper is compared with several existing works by experiments.The results show that the indicators BLEU-4,CIDEr,ROUGE_L,and METEOR are improved by 3.1%,1.3%,0.3%,and 1.5%on a public dataset MSVD and 1.3%,0.5%,0.2%,1.9%on a public dataset MSR-VTT respectively.It can be seen that the proposed method in this paper can generate video captioning with richer semantics than several state-of-the-art approaches.展开更多
Video captioning is the task of assigning complex high-level semantic descriptions (e.g., sentences or paragraphs) to video data. Different from previous video analysis techniques such as video annotation, video eve...Video captioning is the task of assigning complex high-level semantic descriptions (e.g., sentences or paragraphs) to video data. Different from previous video analysis techniques such as video annotation, video event detection and action recognition, video captioning is much closer to human cognition with smaller semantic gap. However, the scarcity of captioned video data severely limits the development of video captioning. In this paper, we propose a novel video captioning approach to describe videos by leveraging freely-available image corpus with abundant literal knowledge. There are two key aspects of our approach: 1) effective integration strategy bridging videos and images, and 2) high efficiency in handling ever-increasing training data. To achieve these goals, we adopt sophisticated visual hashing techniques to efficiently index and search large-scale images for relevant captions, which is of high extensibility to evolving data and the corresponding semantics. Extensive experimental results on various real-world visual datasets show the effectiveness of our approach with different hashing techniques, e.g., LSH (locality-sensitive hashing), PCA-ITQ (principle component analysis iterative quantization) and supervised discrete hashing, as compared with the state-of-the-art methods. It is worth noting that the empirical computational cost of our approach is much lower than that of an existing method, i.e., it takes 1/256 of the memory requirement and 1/64 of the time cost of the method of Devlin et al.展开更多
文摘Guided by relevant learning theories and based on the analysis of the attributes of captioned video, the Chinese ESL learners' characteristics and the characteristics of ESL learning itself, the paper tries to propose a model of integrating captioned video in ESL acquisition process. The model focuses on the feasibility of using captioned video to facilitate or support ESL learning.
基金supported in part by the National Natural Science Foundation of China under Grant 61873277in part by the Natural Science Basic Research Plan in Shaanxi Province of China underGrant 2020JQ-758in part by the Chinese Postdoctoral Science Foundation under Grant 2020M673446.
文摘In the video captioning methods based on an encoder-decoder,limited visual features are extracted by an encoder,and a natural sentence of the video content is generated using a decoder.However,this kind ofmethod is dependent on a single video input source and few visual labels,and there is a problem with semantic alignment between video contents and generated natural sentences,which are not suitable for accurately comprehending and describing the video contents.To address this issue,this paper proposes a video captioning method by semantic topic-guided generation.First,a 3D convolutional neural network is utilized to extract the spatiotemporal features of videos during the encoding.Then,the semantic topics of video data are extracted using the visual labels retrieved from similar video data.In the decoding,a decoder is constructed by combining a novel Enhance-TopK sampling algorithm with a Generative Pre-trained Transformer-2 deep neural network,which decreases the influence of“deviation”in the semantic mapping process between videos and texts by jointly decoding a baseline and semantic topics of video contents.During this process,the designed Enhance-TopK sampling algorithm can alleviate a long-tail problem by dynamically adjusting the probability distribution of the predicted words.Finally,the experiments are conducted on two publicly used Microsoft Research Video Description andMicrosoft Research-Video to Text datasets.The experimental results demonstrate that the proposed method outperforms several state-of-art approaches.Specifically,the performance indicators Bilingual Evaluation Understudy,Metric for Evaluation of Translation with Explicit Ordering,Recall Oriented Understudy for Gisting Evaluation-longest common subsequence,and Consensus-based Image Description Evaluation of the proposed method are improved by 1.2%,0.1%,0.3%,and 2.4% on the Microsoft Research Video Description dataset,and 0.1%,1.0%,0.1%,and 2.8% on the Microsoft Research-Video to Text dataset,respectively,compared with the existing video captioning methods.As a result,the proposed method can generate video captioning that is more closely aligned with human natural language expression habits.
文摘Video description generates natural language sentences that describe the subject,verb,and objects of the targeted Video.The video description has been used to help visually impaired people to understand the content.It is also playing an essential role in devolving human-robot interaction.The dense video description is more difficult when compared with simple Video captioning because of the object’s interactions and event overlapping.Deep learning is changing the shape of computer vision(CV)technologies and natural language processing(NLP).There are hundreds of deep learning models,datasets,and evaluations that can improve the gaps in current research.This article filled this gap by evaluating some state-of-the-art approaches,especially focusing on deep learning and machine learning for video caption in a dense environment.In this article,some classic techniques concerning the existing machine learning were reviewed.And provides deep learning models,a detail of benchmark datasets with their respective domains.This paper reviews various evaluation metrics,including Bilingual EvaluationUnderstudy(BLEU),Metric for Evaluation of Translation with Explicit Ordering(METEOR),WordMover’s Distance(WMD),and Recall-Oriented Understudy for Gisting Evaluation(ROUGE)with their pros and cons.Finally,this article listed some future directions and proposed work for context enhancement using key scene extraction with object detection in a particular frame.Especially,how to improve the context of video description by analyzing key frames detection through morphological image analysis.Additionally,the paper discusses a novel approach involving sentence reconstruction and context improvement through key frame object detection,which incorporates the fusion of large languagemodels for refining results.The ultimate results arise fromenhancing the generated text of the proposedmodel by improving the predicted text and isolating objects using various keyframes.These keyframes identify dense events occurring in the video sequence.
基金supported in part by the National Natural Science Foundation of China under Grants 62273272 and 61873277in part by the Chinese Postdoctoral Science Foundation under Grant 2020M673446+1 种基金in part by the Key Research and Development Program of Shaanxi Province under Grant 2023-YBGY-243in part by the Youth Innovation Team of Shaanxi Universities.
文摘Currently,the video captioning models based on an encoder-decoder mainly rely on a single video input source.The contents of video captioning are limited since few studies employed external corpus information to guide the generation of video captioning,which is not conducive to the accurate descrip-tion and understanding of video content.To address this issue,a novel video captioning method guided by a sentence retrieval generation network(ED-SRG)is proposed in this paper.First,a ResNeXt network model,an efficient convolutional network for online video understanding(ECO)model,and a long short-term memory(LSTM)network model are integrated to construct an encoder-decoder,which is utilized to extract the 2D features,3D features,and object features of video data respectively.These features are decoded to generate textual sentences that conform to video content for sentence retrieval.Then,a sentence-transformer network model is employed to retrieve different sentences in an external corpus that are semantically similar to the above textual sentences.The candidate sentences are screened out through similarity measurement.Finally,a novel GPT-2 network model is constructed based on GPT-2 network structure.The model introduces a designed random selector to randomly select predicted words with a high probability in the corpus,which is used to guide and generate textual sentences that are more in line with human natural language expressions.The proposed method in this paper is compared with several existing works by experiments.The results show that the indicators BLEU-4,CIDEr,ROUGE_L,and METEOR are improved by 3.1%,1.3%,0.3%,and 1.5%on a public dataset MSVD and 1.3%,0.5%,0.2%,1.9%on a public dataset MSR-VTT respectively.It can be seen that the proposed method in this paper can generate video captioning with richer semantics than several state-of-the-art approaches.
基金This work was partially supported by the National Basic Research 973 Program of China under Grant No. 2014CB347600, the National Natural Science Foundation of China under Grant Nos. 61522203, 61572108, 61632007, and 61502081, tile National Ten-Thousand Talents Program of China (Young Top-Notch Talent), the National Thousand Young Talents Program of China, the Fundamental Research Funds for the Central Universities of China under Grant Nos. ZYGX2014Z007 and ZYGX2015J055, and the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20140058.
文摘Video captioning is the task of assigning complex high-level semantic descriptions (e.g., sentences or paragraphs) to video data. Different from previous video analysis techniques such as video annotation, video event detection and action recognition, video captioning is much closer to human cognition with smaller semantic gap. However, the scarcity of captioned video data severely limits the development of video captioning. In this paper, we propose a novel video captioning approach to describe videos by leveraging freely-available image corpus with abundant literal knowledge. There are two key aspects of our approach: 1) effective integration strategy bridging videos and images, and 2) high efficiency in handling ever-increasing training data. To achieve these goals, we adopt sophisticated visual hashing techniques to efficiently index and search large-scale images for relevant captions, which is of high extensibility to evolving data and the corresponding semantics. Extensive experimental results on various real-world visual datasets show the effectiveness of our approach with different hashing techniques, e.g., LSH (locality-sensitive hashing), PCA-ITQ (principle component analysis iterative quantization) and supervised discrete hashing, as compared with the state-of-the-art methods. It is worth noting that the empirical computational cost of our approach is much lower than that of an existing method, i.e., it takes 1/256 of the memory requirement and 1/64 of the time cost of the method of Devlin et al.