We investigate the statistics of polymer capture by a nanopore using Brownian dynamics simulations. It is found that when the velocity flux is greater than a critical velocity flux, the capture picture is a random sel...We investigate the statistics of polymer capture by a nanopore using Brownian dynamics simulations. It is found that when the velocity flux is greater than a critical velocity flux, the capture picture is a random selection process, otherwise it tends to a statistical process governed by energetic considerations. In addition, the chain ends capture probability decreases as the chain length increases and satisfies a power-law scaling of P0(N)-N^-0.8.展开更多
基金financially supported by the National Basic Research Program of China(No.2009CB930100)the National Natural Science Foundation of China(Nos.21234007,21304097 and 51473168)the Joint Research Fund for Overseas Chinese,Hong Kong and Macao Young Scientists of the National Natural Science Foundation of China(No.51028301)
文摘We investigate the statistics of polymer capture by a nanopore using Brownian dynamics simulations. It is found that when the velocity flux is greater than a critical velocity flux, the capture picture is a random selection process, otherwise it tends to a statistical process governed by energetic considerations. In addition, the chain ends capture probability decreases as the chain length increases and satisfies a power-law scaling of P0(N)-N^-0.8.