An unmanued smart car control system and the fuzzy-PID control algorithm are produced.A design scheme of fuzzy-PID controller is put forward.The simulation analysis from matlab indicated that the dynamic performance o...An unmanued smart car control system and the fuzzy-PID control algorithm are produced.A design scheme of fuzzy-PID controller is put forward.The simulation analysis from matlab indicated that the dynamic performance of fuzzy-PID control algorithm is better than that of usual PID.Experimental result of smart car show that it can follow the black guid line well and fast-stable complete running the whole trip.展开更多
Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary ...Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary condition. The effect of the safe headway on the traffic system is considered. According to the control theory, the condition under which traffic jams can be suppressed is analyzed. The results are compared with the previous results concerning congestion control. The simulations show that the suppression performance of our scheme on traffic jams is better than those of the previous schemes, although all the schemes can suppress traffic jams. The simulation results are consistent with theoretical analyses.展开更多
The automatic control of clutch starting in car with a metal pushingbelt-planetary gear continuously variable transmission (CVT) is a complex problem. A suited controlstrategy is required to realize quick and smooth s...The automatic control of clutch starting in car with a metal pushingbelt-planetary gear continuously variable transmission (CVT) is a complex problem. A suited controlstrategy is required to realize quick and smooth start. A simulation state space equation isestablished on clutch staring control of a car with CVT by bond graph theory. According to the fuzzycontrol method with the expert system, a fuzzy control system of car starting process to weaken thejerk motion is introduced. The simulation results indicate that the jerk motion of clutch startingis below 10 m/s^3.展开更多
Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the ve...Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the velocity differences of the two vehicles in front is put forward. The condition under which the traffic jam can be contained is analyzed. The results axe compared with that presented by Konishi et al [Phys. Rev. 1999 E 60 4000-4007]. The simulation results show that the temporal behavior obtained by our method is better than that by the Konishi's et al. method, although both the methods could suppress the traffic jam. The simulation results are consistent with the theoretical analysis.展开更多
A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the targ...A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones展开更多
How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interio...How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.展开更多
This paper provides a new obstacle avoidance control method for cars based on big data and just-in-time modeling. Just-in-time modeling is a new kind of data-driven control technique in the age of big data and is used...This paper provides a new obstacle avoidance control method for cars based on big data and just-in-time modeling. Just-in-time modeling is a new kind of data-driven control technique in the age of big data and is used in various real systems. The main property of the proposed method is that a gain and a control time which are parameters in the control input to avoid an encountered obstacle are computed from a database which includes a lot of driving data in various situations. Especially, the important advantage of the method is small computation time, and hence it realizes real-time obstacle avoidance control for cars. From some numerical simulations, it is showed that the new control method can make the car avoid various obstacles efficiently in comparison with the previous method.展开更多
Objective To estimate the association of driver sleepiness with the risk of car crashes. Methods A population-based case-control study was conducted in Shenyang, a northeastern city in China, between November 2001 and...Objective To estimate the association of driver sleepiness with the risk of car crashes. Methods A population-based case-control study was conducted in Shenyang, a northeastern city in China, between November 2001 and July 2002. The case group comprised 406 car drivers involved in crashes, and 438 car drivers recruited at randomly selected sites, and on the day of week, and the time of day when they were driving on highways in the study region during the study period were used as control groups. Face-to-face interviews with drivers were conducted according to a well-structured questionnaire covering the circumstances of their current trip and their background information. Stanford sleepiness scale and Epworth sleepiness scale were used to quantify acute sleepiness and chronic sleepiness respectively. Results There was a strong association between chronic sleepiness and the risk of car crash. Significantly increased risk of crash was associated with drivers who identified themselves as sleepy (Epworth sleepiness score≥10 vs <10; adjusted odds ratio 2.07, 95% confidence interval 1.30 to 3.29), but no increased risk was associated with measures of acute sleepiness. Conclusions Chronic sleepiness in car drivers significantly increases the risk of car crash. Reductions in road traffic injuries may be achieved if fewer people drive when they are sleepy.展开更多
A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or...A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or two vibration states of the vehicle based on a quarter-car model or a half vehicle model via MR suspensions. They cannot provide a satisfying whole-vehicle performance on a road test. Hence, a full car vibration model via an MR suspension system is proposed. To reduce the heave, pitch and roll motion of the vehicle body and the vertical vibration of four wheels, a fuzzy hybrid controller for vibration attitude of full car via MR suspensions is proposed. First, a skyhook-fuzzy control scheme is designed to reduce the heave, roll and pitch motion of the vehicle body. Second, a revised ground hook control strategy is adopted to decrease the vertical vibration of the wheels. Finally, a hybrid control scheme based on a fuzzy reasoning method is proposed to tune the hybrid damping parameter, which is suitable for coordination the attitude of the vehicle body and the wheels. A test and control system for the vibration attitude of full car is set up. It is implemented on a car equipped with four MR suspensions. The results on random highway and rough road indicate that the fuzzy hybrid controller can decrease the vibration accelerations of the vehicle body and the wheels to 65%-80% and 80%-90%, respectively. It reduces the automotive vibrations of heave, roll and pitch more effectively than a passive suspension and an MR suspension with a traditional hybrid control scheme so that it achieves better ride comfort and road holding concurrently. This paper proposes a new fuzzy hybrid control(FHC) method for reducing vibration attitude of full car via MR suspensions and develops a road test to evaluate the FHC.展开更多
In order to realize the accurate obstacle avoidance function of intelligent car, we propose an intelligent car obstacle avoidance system based on optimized fuzzy control algorithm. Firstly, the kinematics model of int...In order to realize the accurate obstacle avoidance function of intelligent car, we propose an intelligent car obstacle avoidance system based on optimized fuzzy control algorithm. Firstly, the kinematics model of intelligent car obstacle avoidance is established, and an efficient environment information collection system composed of multiple sensors is designed to realize the comprehensive collection of obstacle information. Then, the optimized fuzzy control system is adopted to improve the position control accuracy and obstacle avoidance ability. Through the physical debugging and joint simulation of the intelligent car fuzzy controller in the MATLAB and Simulink environment, the simulation results show that the control method can make the collision-free path planned by the intelligent car from the initial state to the obstacle avoidance smoother, and at the same time, the obstacle avoidance of the intelligent car. The actual running distance is reduced by about 16%, which can ensure the practicability of the obstacle avoidance system, provide a new guarantee for the safe operation of the car, and also provide a new idea for the development of the unmanned car.展开更多
In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by th...In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems.展开更多
To guarantee bus priority with a minimum impact on car traffic at intersections, an optimal control system of the intermittent bus-only approach (IBA) was proposed. The problems of the existing system are first solv...To guarantee bus priority with a minimum impact on car traffic at intersections, an optimal control system of the intermittent bus-only approach (IBA) was proposed. The problems of the existing system are first solved through optimization: the judgment time of the IBA system was advanced to allow a bus to jump car queues if the bus was detected to arrive at the intersection, and the instant that the IBA lane became available to cars was controlled dynamically to increase the capacity of the IBA lane. The total car delay in one cycle was then analyzed quantitatively when implementing the optimal control system. The results show that in comparison with the existing system of the IBA, the car delay is greatly reduced and the probability of a car stopping twice is low after optimizing the IBA system.展开更多
文摘An unmanued smart car control system and the fuzzy-PID control algorithm are produced.A design scheme of fuzzy-PID controller is put forward.The simulation analysis from matlab indicated that the dynamic performance of fuzzy-PID control algorithm is better than that of usual PID.Experimental result of smart car show that it can follow the black guid line well and fast-stable complete running the whole trip.
基金supported by the Major Consulting Project of Chinese Academy of Engineering (Grant No. 2012-ZX-22)the Natural Science Foundation of Chongqing Science & Technology Commission of China (Grant No. 2012jjB40002)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120191110047)the Engineering Center Research Program of Chongqing Science & Technology Commission of China (Grant No. 2011pt-gc30005)the Key Technology R&D Project of Chongqing Science & Technology Commission of China (Grant Nos. 2011AB2052 and 2012gg-yyjsB30001)
文摘Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary condition. The effect of the safe headway on the traffic system is considered. According to the control theory, the condition under which traffic jams can be suppressed is analyzed. The results are compared with the previous results concerning congestion control. The simulations show that the suppression performance of our scheme on traffic jams is better than those of the previous schemes, although all the schemes can suppress traffic jams. The simulation results are consistent with theoretical analyses.
基金National Natural Science Founda-tion of China (No.59835160).
文摘The automatic control of clutch starting in car with a metal pushingbelt-planetary gear continuously variable transmission (CVT) is a complex problem. A suited controlstrategy is required to realize quick and smooth start. A simulation state space equation isestablished on clutch staring control of a car with CVT by bond graph theory. According to the fuzzycontrol method with the expert system, a fuzzy control system of car starting process to weaken thejerk motion is introduced. The simulation results indicate that the jerk motion of clutch startingis below 10 m/s^3.
基金Project supported by the National Key Basic Research Program of China (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 10532060, 10602025 and 10802042)+1 种基金the Natural Science Foundation of Ningbo (Grant Nos 2007A610050, 2009A610014 and 2009A610154)K.C. Wong Magna Fund in Ningbo University
文摘Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the velocity differences of the two vehicles in front is put forward. The condition under which the traffic jam can be contained is analyzed. The results axe compared with that presented by Konishi et al [Phys. Rev. 1999 E 60 4000-4007]. The simulation results show that the temporal behavior obtained by our method is better than that by the Konishi's et al. method, although both the methods could suppress the traffic jam. The simulation results are consistent with the theoretical analysis.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11072117 and 61074142)the Scientific Research Fund of the Educational Department of Zhejiang Province,China (Grant No.Z201119278)+2 种基金the Natural Science Foundation of Ningbo,China (Grant Nos.2012A610152 and 2012A610038)the Disciplinary Project of Ningbo,China (Grant No.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China
文摘A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones
基金supported by National Natural Science Foundation of China (Grant No. 51175214)Scientific and Technological Planning Project of China (Grant No. 2011BAG03B01-1)Based Research Operation Expenses Project of Jilin University, China (Grant No. 421032572415)
文摘How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.
文摘This paper provides a new obstacle avoidance control method for cars based on big data and just-in-time modeling. Just-in-time modeling is a new kind of data-driven control technique in the age of big data and is used in various real systems. The main property of the proposed method is that a gain and a control time which are parameters in the control input to avoid an encountered obstacle are computed from a database which includes a lot of driving data in various situations. Especially, the important advantage of the method is small computation time, and hence it realizes real-time obstacle avoidance control for cars. From some numerical simulations, it is showed that the new control method can make the car avoid various obstacles efficiently in comparison with the previous method.
文摘Objective To estimate the association of driver sleepiness with the risk of car crashes. Methods A population-based case-control study was conducted in Shenyang, a northeastern city in China, between November 2001 and July 2002. The case group comprised 406 car drivers involved in crashes, and 438 car drivers recruited at randomly selected sites, and on the day of week, and the time of day when they were driving on highways in the study region during the study period were used as control groups. Face-to-face interviews with drivers were conducted according to a well-structured questionnaire covering the circumstances of their current trip and their background information. Stanford sleepiness scale and Epworth sleepiness scale were used to quantify acute sleepiness and chronic sleepiness respectively. Results There was a strong association between chronic sleepiness and the risk of car crash. Significantly increased risk of crash was associated with drivers who identified themselves as sleepy (Epworth sleepiness score≥10 vs <10; adjusted odds ratio 2.07, 95% confidence interval 1.30 to 3.29), but no increased risk was associated with measures of acute sleepiness. Conclusions Chronic sleepiness in car drivers significantly increases the risk of car crash. Reductions in road traffic injuries may be achieved if fewer people drive when they are sleepy.
基金supported by National Natural Science Foundation of China (Grant No. 60674097, Grant No. 60804018)Visiting Scholar Foundation of Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education in Chongqing University of China, and Chongqing Municipal Natural Science Foundation of China (Grant No. 2008BB2407, Grant No. 2009AC3079, Grant No. 2009BB3416)
文摘A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or two vibration states of the vehicle based on a quarter-car model or a half vehicle model via MR suspensions. They cannot provide a satisfying whole-vehicle performance on a road test. Hence, a full car vibration model via an MR suspension system is proposed. To reduce the heave, pitch and roll motion of the vehicle body and the vertical vibration of four wheels, a fuzzy hybrid controller for vibration attitude of full car via MR suspensions is proposed. First, a skyhook-fuzzy control scheme is designed to reduce the heave, roll and pitch motion of the vehicle body. Second, a revised ground hook control strategy is adopted to decrease the vertical vibration of the wheels. Finally, a hybrid control scheme based on a fuzzy reasoning method is proposed to tune the hybrid damping parameter, which is suitable for coordination the attitude of the vehicle body and the wheels. A test and control system for the vibration attitude of full car is set up. It is implemented on a car equipped with four MR suspensions. The results on random highway and rough road indicate that the fuzzy hybrid controller can decrease the vibration accelerations of the vehicle body and the wheels to 65%-80% and 80%-90%, respectively. It reduces the automotive vibrations of heave, roll and pitch more effectively than a passive suspension and an MR suspension with a traditional hybrid control scheme so that it achieves better ride comfort and road holding concurrently. This paper proposes a new fuzzy hybrid control(FHC) method for reducing vibration attitude of full car via MR suspensions and develops a road test to evaluate the FHC.
文摘In order to realize the accurate obstacle avoidance function of intelligent car, we propose an intelligent car obstacle avoidance system based on optimized fuzzy control algorithm. Firstly, the kinematics model of intelligent car obstacle avoidance is established, and an efficient environment information collection system composed of multiple sensors is designed to realize the comprehensive collection of obstacle information. Then, the optimized fuzzy control system is adopted to improve the position control accuracy and obstacle avoidance ability. Through the physical debugging and joint simulation of the intelligent car fuzzy controller in the MATLAB and Simulink environment, the simulation results show that the control method can make the collision-free path planned by the intelligent car from the initial state to the obstacle avoidance smoother, and at the same time, the obstacle avoidance of the intelligent car. The actual running distance is reduced by about 16%, which can ensure the practicability of the obstacle avoidance system, provide a new guarantee for the safe operation of the car, and also provide a new idea for the development of the unmanned car.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11372166,11372147,61074142,and 11072117)the Scientific Research Fund of Zhejiang Province,China(Grant No.LY13A010005)+1 种基金the Disciplinary Project of Ningbo City,China(Grant No.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China,and the Government of the Hong Kong Administrative Region,China(Grant No.119011)
文摘In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems.
文摘To guarantee bus priority with a minimum impact on car traffic at intersections, an optimal control system of the intermittent bus-only approach (IBA) was proposed. The problems of the existing system are first solved through optimization: the judgment time of the IBA system was advanced to allow a bus to jump car queues if the bus was detected to arrive at the intersection, and the instant that the IBA lane became available to cars was controlled dynamically to increase the capacity of the IBA lane. The total car delay in one cycle was then analyzed quantitatively when implementing the optimal control system. The results show that in comparison with the existing system of the IBA, the car delay is greatly reduced and the probability of a car stopping twice is low after optimizing the IBA system.