With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerba...With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerbated these challenges. This pressing issue underscores the critical necessity for a structured approach to managing university entries and overseeing parking at the gates. The proposed smart parking management system aims to address these concerns by introducing a design concept that restricts unauthorized access and provides exclusive parking privileges to authorized users. Through image processing, the system identifies available parking spaces, relaying real-time information to users via a mobile application. This comprehensive solution also generates detailed reports (daily, weekly, and monthly), aiding university safety authorities in future gate management decisions.展开更多
Land transport can no longer meet the requirements.European transport can be described by these words−crowded motorways and cities,dangerous emissions,ubiquitous traffic accidents,delays,expensive railways.Solutions a...Land transport can no longer meet the requirements.European transport can be described by these words−crowded motorways and cities,dangerous emissions,ubiquitous traffic accidents,delays,expensive railways.Solutions are being sought to transfer a large part of passengers and especially freight transport to(high-speed)rail,and efforts are moving towards electromobility,car-sharing,5G-connectivity,autonomous driving,MaaS(Mobility as a Service)-coordinated transport or hyperloop-type solutions.However,all these solutions have additional challenges and limitations.Solutions are not being searched where they really exist-in the mutual adaptation of road and rail vehicles and their deep cooperation.The ComplexTrans project shows that simply adapting the dimensions and functions of road and rail vehicles can eliminate(or at least significantly reduce)all the problems of existing land transport.The main features of the ComplexTrans system are sufficient parking spaces,reduction of urban and non-urban congestion,electric vehicles with unlimited range and cheaper than standard cars,cheaper and more accessible battery charging,“autonomous ride”,solving the overlap between passenger and freight rail transport and making it self-financing,transferring intercity freight transport to rail,replacing part of continental air transport and many others.The cost-effective and clustered individual transport and individualised public transport of the ComplexTrans system also bring very significant reductions in the risk of transmission of covid-19 and other contagious diseases during transport.展开更多
This paper presents a smart electrical car park model where the power flows among electrical vehicles(EVs)as well as between EVs and the main grid.Based on this model,an optimal charging/discharging scheme is proposed...This paper presents a smart electrical car park model where the power flows among electrical vehicles(EVs)as well as between EVs and the main grid.Based on this model,an optimal charging/discharging scheme is proposed.The fluctuation of hourly electricity rates is considered in this strategy to select a proper charging/discharging rate for each EV with less expenditure during each charging period.The proposed smart electrical car park is able to buy or sell electricity in the form of active and/or reactive power,i.e.kWh and/or kVARh,from or to the main grid to improve the power quality.According to the current state of charge of the EV’s battery bank,customers and the grid demands,a control center makes the decisions and sends the instructions of specific charging/discharging mode to each charging station.The performance of the proposed charging/discharging algorithm is simulated in Matlab.A comparison between the proposed and the unregulated charging/discharging strategies has been implemented.The results demonstrate that the proposed scheme can achieve better economic profits for EV customers and increase the commercial benefits for the car park owner.展开更多
Particulate matter (PM) pollution in an underground car park in Wuhan was investigated. Mass concentrations of PM10 and PM2.5 were obtained using gravimetric method. Selected metal elements, such as Fe, Mn, Zn, Pb, ...Particulate matter (PM) pollution in an underground car park in Wuhan was investigated. Mass concentrations of PM10 and PM2.5 were obtained using gravimetric method. Selected metal elements, such as Fe, Mn, Zn, Pb, and Cu in PM10 samples, were determined using atomic absorption spectrometer (AAS). Beta attenuation method was applied to observe the hourly variation of PM10 levels. Results show that average PM10 concentrations at the entrance and at the exit were 101.3 μg/m3 and 234.4 μg/m3, respectively, and average PM2.5 concentrations at the entrance and at the exit were 47.7 μg/m3 and 62.7μg/m3, respectively. PM pollution was worse at the exit than at the entrance. Hourly PMlo concentration was weakly correlated with traffic flow. Regarding element concentrations, the most enriched element in PM10 samples was Fe. Re-suspension of soil dust at the exit is an important source of PM10.展开更多
For open car park structures,adopting a performance-based structural fire design is often justified and allowed because the fire does not reach flashover.However,this design approach requires an accurate assessment of...For open car park structures,adopting a performance-based structural fire design is often justified and allowed because the fire does not reach flashover.However,this design approach requires an accurate assessment of temperatures in structural members exposed to car fires.This paper describes a numerical study on the thermal exposure on steel framing members in open car park fires.Steel temperatures are computed by the coupling of computational fluid dynamics and finite element modeling,and by analytical models from the Eurocodes.In addition,the influence of galvanization on the steel temperature evolution is assessed.Results show that temperatures in unprotected beams and columns are influenced by the section geometry,car fire scenario,modeling approach,and use of galvanization.Galvanization slightly delays and reduces peak temperature.Regarding the different models,CFD-FEM(CFD:computational fluid dynamics,FEM:finite-element method)coupled models predict lower temperatures than the Hasemi model,because the latter conservatively assumes that the fire flame continuously touches the ceiling.Further,the Hasemi model cannot account for the effect of reduced emissivity from galvanization on the absorbed heat flux.Detailed temperature distributions obtained in the steel members can be used to complete efficient structural fire designs based on the member sections,structure layout,and use of galvanization.展开更多
文摘With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerbated these challenges. This pressing issue underscores the critical necessity for a structured approach to managing university entries and overseeing parking at the gates. The proposed smart parking management system aims to address these concerns by introducing a design concept that restricts unauthorized access and provides exclusive parking privileges to authorized users. Through image processing, the system identifies available parking spaces, relaying real-time information to users via a mobile application. This comprehensive solution also generates detailed reports (daily, weekly, and monthly), aiding university safety authorities in future gate management decisions.
基金This research is partly supported by project SGS-2019-001The 3-D visualisations were prepared by students of University of West Bohemia or by professional designers.
文摘Land transport can no longer meet the requirements.European transport can be described by these words−crowded motorways and cities,dangerous emissions,ubiquitous traffic accidents,delays,expensive railways.Solutions are being sought to transfer a large part of passengers and especially freight transport to(high-speed)rail,and efforts are moving towards electromobility,car-sharing,5G-connectivity,autonomous driving,MaaS(Mobility as a Service)-coordinated transport or hyperloop-type solutions.However,all these solutions have additional challenges and limitations.Solutions are not being searched where they really exist-in the mutual adaptation of road and rail vehicles and their deep cooperation.The ComplexTrans project shows that simply adapting the dimensions and functions of road and rail vehicles can eliminate(or at least significantly reduce)all the problems of existing land transport.The main features of the ComplexTrans system are sufficient parking spaces,reduction of urban and non-urban congestion,electric vehicles with unlimited range and cheaper than standard cars,cheaper and more accessible battery charging,“autonomous ride”,solving the overlap between passenger and freight rail transport and making it self-financing,transferring intercity freight transport to rail,replacing part of continental air transport and many others.The cost-effective and clustered individual transport and individualised public transport of the ComplexTrans system also bring very significant reductions in the risk of transmission of covid-19 and other contagious diseases during transport.
文摘This paper presents a smart electrical car park model where the power flows among electrical vehicles(EVs)as well as between EVs and the main grid.Based on this model,an optimal charging/discharging scheme is proposed.The fluctuation of hourly electricity rates is considered in this strategy to select a proper charging/discharging rate for each EV with less expenditure during each charging period.The proposed smart electrical car park is able to buy or sell electricity in the form of active and/or reactive power,i.e.kWh and/or kVARh,from or to the main grid to improve the power quality.According to the current state of charge of the EV’s battery bank,customers and the grid demands,a control center makes the decisions and sends the instructions of specific charging/discharging mode to each charging station.The performance of the proposed charging/discharging algorithm is simulated in Matlab.A comparison between the proposed and the unregulated charging/discharging strategies has been implemented.The results demonstrate that the proposed scheme can achieve better economic profits for EV customers and increase the commercial benefits for the car park owner.
基金supported by the Fundamental Research Funds for the Central Universities of China(Grant No. 2011PY049)
文摘Particulate matter (PM) pollution in an underground car park in Wuhan was investigated. Mass concentrations of PM10 and PM2.5 were obtained using gravimetric method. Selected metal elements, such as Fe, Mn, Zn, Pb, and Cu in PM10 samples, were determined using atomic absorption spectrometer (AAS). Beta attenuation method was applied to observe the hourly variation of PM10 levels. Results show that average PM10 concentrations at the entrance and at the exit were 101.3 μg/m3 and 234.4 μg/m3, respectively, and average PM2.5 concentrations at the entrance and at the exit were 47.7 μg/m3 and 62.7μg/m3, respectively. PM pollution was worse at the exit than at the entrance. Hourly PMlo concentration was weakly correlated with traffic flow. Regarding element concentrations, the most enriched element in PM10 samples was Fe. Re-suspension of soil dust at the exit is an important source of PM10.
基金This research was based in part upon work supported by ArcelorMittal Global R&D.This support is gratefully acknowledged.
文摘For open car park structures,adopting a performance-based structural fire design is often justified and allowed because the fire does not reach flashover.However,this design approach requires an accurate assessment of temperatures in structural members exposed to car fires.This paper describes a numerical study on the thermal exposure on steel framing members in open car park fires.Steel temperatures are computed by the coupling of computational fluid dynamics and finite element modeling,and by analytical models from the Eurocodes.In addition,the influence of galvanization on the steel temperature evolution is assessed.Results show that temperatures in unprotected beams and columns are influenced by the section geometry,car fire scenario,modeling approach,and use of galvanization.Galvanization slightly delays and reduces peak temperature.Regarding the different models,CFD-FEM(CFD:computational fluid dynamics,FEM:finite-element method)coupled models predict lower temperatures than the Hasemi model,because the latter conservatively assumes that the fire flame continuously touches the ceiling.Further,the Hasemi model cannot account for the effect of reduced emissivity from galvanization on the absorbed heat flux.Detailed temperature distributions obtained in the steel members can be used to complete efficient structural fire designs based on the member sections,structure layout,and use of galvanization.