Purpose–The principle of infinite life design currently directs fatigue resistance strategies for metro car bodies.However,this principle might not fully account for the dynamic influence of operational loads and the...Purpose–The principle of infinite life design currently directs fatigue resistance strategies for metro car bodies.However,this principle might not fully account for the dynamic influence of operational loads and the inevitable presence of defects.This study aims to integrate methods of service life estimation and residual life assessment,which are based on operational loads,into the existing infinite life verification framework to further ensure the operational safety of subway trains.Design/methodology/approach–Operational loads and fatigue loading spectra were determined through the field test.The material test was conducted to investigate characteristics of the fracture toughness and the crack growth rate.The fatigue strength of the metro car body was first verified using the finite element method and Moore–Kommers–Japer diagrams.The service life was then estimated by applying the Miner rule and high-cycle fatigue curves in a modified form of the Basquin equation.Finally,the residual life was assessed utilizing a fracture assessment diagram and a fitted curve of crack growth rate adhered to the Paris formula.Findings–Neither the maximum utilization factor nor the cumulative damage exceeds the threshold value of 1.0,the metro car body could meet the design life requirement of 30 years or 6.6 million km.However,three out of five fatigue key points were significantly influenced by the operational loads,which indicates that a single fatigue strength verification cannot achieve the infinite life design objective of the metro car body.For a projected design life of 30 years,the tolerance depth is 12.2 mm,which can underscore a relatively robust damage tolerance capability.Originality/value–The influence of operational loads on fatigue life was presented by the discrepancy analysis between fatigue strength verification results and service life estimation results.The fracture properties of butt-welded joints were tested and used for the damage tolerance assessment.The damage tolerance life can be effectively related by a newly developed equation in this study.It can be a valuable tool to provide the theoretical guidance and technical support for the structural improvements and maintenance decisions of the metro car body.展开更多
Purpose–This study aimed to facilitate a rapid evaluation of track service status and vehicle ride comfort based on car body acceleration.Consequently,a low-cost,data-driven approach was proposed for analyzing speed-...Purpose–This study aimed to facilitate a rapid evaluation of track service status and vehicle ride comfort based on car body acceleration.Consequently,a low-cost,data-driven approach was proposed for analyzing speed-related acceleration limits in metro systems.Design/methodology/approach–A portable sensing terminal was developed to realize easy and efficient detection of car body acceleration.Further,field measurements were performed on a 51.95-km metro line.Data from 272 metro sections were tested as a case study,and a quantile regression method was proposed to fit the control limits of the car body acceleration at different speeds using the measured data.Findings–First,the frequency statistics of the measured data in the speed-acceleration dimension indicated that the car body acceleration was primarily concentrated within the constant speed stage,particularly at speeds of 15.4,18.3,and 20.9 m/s.Second,resampling was performed according to the probability density distribution of car body acceleration for different speed domains to achieve data balance.Finally,combined with the traditional linear relationship between speed and acceleration,the statistical relationships between the speed and car body acceleration under different quantiles were determined.We concluded the lateral/vertical quantiles of 0.8989/0.9895,0.9942/0.997,and 0.9998/0.993 as being excellent,good,and qualified control limits,respectively,for the lateral and vertical acceleration of the car body.In addition,regression lines for the speedrelated acceleration limits at other quantiles(0.5,0.75,2s,and 3s)were obtained.Originality/value–The proposed method is expected to serve as a reference for further studies on speedrelated acceleration limits in rail transit systems.展开更多
α-Synuclein is a protein that mainly exists in the presynaptic terminals.Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases,including Parkinson’s disease.Aggregated and...α-Synuclein is a protein that mainly exists in the presynaptic terminals.Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases,including Parkinson’s disease.Aggregated and highly phospho rylated a-synuclein constitutes the main component of Lewy bodies in the brain,the pathological hallmark of Parkinson s disease.For decades,much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson s disease as a systemic disease.Recent evidence demonstrates that,at least in some patients,the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain.Injection of α-synuclein preformed fibrils into the gastrointestinal tra ct trigge rs the gutto-brain propagation of α-synuclein pathology.However,whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation.In this review,we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson’s disease.We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.展开更多
Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative mat...Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.展开更多
Background: Loose bodies (LBs) within the knee joint are commonly encountered during clinical practice and are frequently observed during knee arthroscopy. The primary treatment involves the removal of loose bodies;ho...Background: Loose bodies (LBs) within the knee joint are commonly encountered during clinical practice and are frequently observed during knee arthroscopy. The primary treatment involves the removal of loose bodies;however, their complete eradication is often challenging and may not address underlying diseases, leading to persistent symptoms and the risk of new loose body formation. Aim: This case report aims to present the findings and surgical management of a 52-year-old male with an unusually large osseous loose body in the knee joint and associated pathologies. Case Presentation: The patient, a 52-year-old male, experienced recurrent episodes of severe, sudden, and painful locking of the knee joint, leading to difficulties moving. A plain MRI study was conducted to evaluate the condition of the knee joint, which revealed various degenerative changes and the presence of a loose body. Subsequently, an arthroscopic examination was performed under general anesthesia, uncovering the presence of an abnormally large loose body, as well as other pathologies including chondropathy, meniscal degeneration, and Baker’s cyst. Conclusion: Loose bodies (LBs) in the knee joint pose significant challenges and may lead to debilitating symptoms. Timely diagnosis and appropriate surgical intervention are crucial for symptom relief and the prevention of further joint damage as arthroscopic excision. Comprehensive imaging has a vital role in guiding treatment decisions and optimizing patient outcomes. In this case, the removal of the loose body improved patient outcomes and helped prevent potential joint complications.展开更多
David’s Story by Zoë Wicomb addresses the complexities of representing female suffering and the limitations of traditional historical narratives in capturing the experiences of marginalized bodies.It challenges ...David’s Story by Zoë Wicomb addresses the complexities of representing female suffering and the limitations of traditional historical narratives in capturing the experiences of marginalized bodies.It challenges the grand narratives of national history by emphasizing the indispensable role of women’s experiences.Through characters like Dulcie and Rachael,Wicomb portrays the female body as a site of resistance and resilience,highlighting the need for more nuanced and inclusive ways of documenting history.Underscoring the inexpressibility of trauma and the limitations of language and representation,the novel self-reflexively acknowledges its own aporia of completing the narrative,embodying the ongoing struggle to capture the full breadth of human experience.展开更多
Combined bodies of rock-like material and rock are widely encountered in geotechnical engineering,such as tunnels and mines.The existing theoretical models describing the stress-strain relationship of a combined body ...Combined bodies of rock-like material and rock are widely encountered in geotechnical engineering,such as tunnels and mines.The existing theoretical models describing the stress-strain relationship of a combined body lack a binary feature.Based on effective medium theory,this paper presents the governing equation of the“elastic modulus”for combined and single bodies under triaxial compressive tests.A binary effective medium model is then established.Based on the compressive experiment of concretegranite combined bodies,the feasibility of determining the stress threshold based on crack axial strain is discussed,and the model is verified.The model is further extended to coal-rock combined bodies of more diverse types,and the variation laws of the compressive mechanical parameters are then discussed.The results show that the fitting accuracy of the model with the experimental curves of the concretegranite combined bodies and various types of coal-rock combined bodies are over 95%.The crack axial strain method can replace the crack volumetric strain method,which clarifies the physical meanings of the model parameters.The variation laws of matrix parameters and crack parameters are discussed in depth and are expected to be more widely used in geotechnical engineering.展开更多
Objective Vitamin D(VD)deficiency was reported to contribute to the progression of Crohn’s disease(CD)and affect the prognosis of CD patients.This study investigated the role of serum VD,body mass index(BMI),and tumo...Objective Vitamin D(VD)deficiency was reported to contribute to the progression of Crohn’s disease(CD)and affect the prognosis of CD patients.This study investigated the role of serum VD,body mass index(BMI),and tumor necrosis factor alpha(TNF-α)in the diagnosis of Crohn’s disease.Methods CD patients(n=76)and healthy subjects(n=76)were enrolled between May 2019 and December 2020.The serum 25-hydroxyvitamin D[25(OH)D]levels,BMI,and TNF-αlevels,together with other biochemical parameters,were assessed before treatment.The diagnostic efficacy of the single and joint detection of serum 25(OH)D,BMI,and TNF-αwas determined using receiver operating characteristic(ROC)curves.Results The levels of 25(OH)D,BMI,and nutritional indicators,including hemoglobin,total protein,albumin,and high-density lipoprotein cholesterol,were much lower,and the TNF-αlevels were much higher in the CD patients than in the healthy subjects(P<0.05 for all).The areas under the ROC curve for the single detection of 25(OH)D,BMI,and TNF-αwere 0.887,0.896,and 0.838,respectively,with the optimal cutoff values being 20.64 ng/mL,19.77 kg/m^(2),and 6.85 fmol/mL,respectively.The diagnostic efficacy of the joint detection of 25(OH)D,BMI,and TNF-αwas the highest,with an area under the ROC curve of 0.988(95%CI:0.968–1.000).Conclusion The joint detection of 25(OH)D,TNF-α,and BMI showed high sensitivity,specificity,and accuracy in CD diagnosis;thus,it would be effective for the diagnosis of CD in clinical practice.展开更多
Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. Howeve...Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. However, the lightweight structures must show the improved capability for structural rigidity and crash energy absorption. Advanced high strength steels are attractive materials to achieve higher strength for energy absorption and reduce weight of vehicles. Currently, many research works focus on component level axial crash testing and simulation of high strength steels. However, the effects of high strength steel parts to the impact of auto body are not considered. The goal of this research is to study the application of hot forming high strength steel(HFHSS) in order to evaluate the potential using in vehicle design for lightweight and passive safety. The performance of HFHSS is investigated by using both experimental and analytical techniques. In particular, the focus is on HFHSS which may have potential to enhance the passive safety for lightweight auto body. Automotive components made of HFHSS and general high strength steel(GHSS) are considered in this study. The material characterization of HFHSS is carried out through material experiments. The finite element method, in conjunction with the validated model is used to simulate the side impact of a car with GHSS and HFHSS parts according to China New Car Assessment Programme(C-NCAP) crash test. The deformation and acceleration characteristics of car body are analyzed and the injuries of an occupant are calculated. The results from the simulation analyses of HFHSS are compared with those of GHSS. The comparison indicates that the HFHSS parts on car body enhance the passive safety for the lightweight car body in side impact. Parts of HFHSS reduce weight of vehicle through thinner thickness offering higher strength of parts. Passive safety of lightweight car body is improved through reduction of crash deformation on car body by the application of HFHSS parts. The experiments and simulation are conducted to the HFHSS parts on auto body. The results demonstrate the feasibility of the application of HFHSS materials on automotive components for improved capability of passive safety and lightweight.展开更多
Car body design in view of structural performance and lightweighting is a challenging task due to all the performance targets that must be satisfied such as vehicle safety and ride quality.In this paper,material repla...Car body design in view of structural performance and lightweighting is a challenging task due to all the performance targets that must be satisfied such as vehicle safety and ride quality.In this paper,material replacement along with multidisciplinary design optimization strategy is proposed to develop a lightweight car body structure that satisfies the crash and vibration criteria while minimizing weight.Through finite element simulations,full frontal,offset frontal,and side crashes of a full car model are evaluated for peak acceleration,intrusion distance,and the internal energy absorbed by the structural parts.In addition,the first three fundamental natural frequencies are combined with the crash metrics to form the design constraints.The wall thicknesses of twenty-two parts are considered as the design variables.Latin Hypercube Sampling is used to sample the design space,while Radial Basis Function methodology is used to develop surrogate models for the selected crash responses at multiple sites as well as the first three fundamental natural frequencies.A nonlinear surrogate-based optimization problem is formulated for mass minimization under crash and vibration constraints.Using Sequential Quadratic Programming,the design optimization problem is solved with the results verified by finite element simulations.The performance of the optimum design with magnesium parts shows significant weight reduction and better performance compared to the baseline design.展开更多
BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevent...BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevention strategies for childhood obesity.Thirty normal-weight and thirty age-and sex-matched obese children were included.Questionnaires and body measurements were collected,and fecal samples underwent 16S rDNA sequencing.Significant differences in body mass index(BMI)and body-fat percentage were observed between the groups.Analysis of gut microbiota diversity revealed lowerα-diversity in obese children.Differences in gut microbiota composition were found between the two groups.Prevotella and Firmicutes were more abundant in the obese group,while Bacteroides and Sanguibacteroides were more prevalent in the control group.AIM To identify the characteristic gut genera in obese and normal-weight children(8-12-year-old)using 16S rDNA sequencing,and provide a basis for subsequent mechanistic studies and prevention strategies for childhood obesity.METHODS Thirty each normal-weight,1:1 matched for age and sex,and obese children,with an obese status from 2020 to 2022,were included in the control and obese groups,respectively.Basic information was collected through questionnaires and body measurements were obtained from both obese and normal-weight children.Fecal samples were collected from both groups and subjected to 16S rDNA sequencing using an Illumina MiSeq sequencing platform for gut microbiota diversity analysis.RESULTS Significant differences in BMI and body-fat percentage were observed between the two groups.The Ace and Chao1 indices were significantly lower in the obese group than those in the control group,whereas differences were not significant in the Shannon and Simpson indices.Kruskal-Wallis tests indicated significant differences in unweighted and weighted UniFrac distances between the gut microbiota of normal-weight and obese children(P<0.01),suggesting substantial disparities in both the species and quantity of gut microbiota between the two groups.Prevotella,Firmicutes,Bacteroides,and Sanguibacteroides were more abundant in the obese and control groups,respectively.Heatmap results demonstrated significant differences in the gut microbiota composition between obese and normal-weight children.CONCLUSION Obese children exhibited lowerα-diversity in their gut microbiota than did the normal-weight children.Significant differences were observed in the composition of gut microbiota between obese and normal-weight children.展开更多
Parkinson’s disease(PD)is one of the primary vital degenerative diseases that affect the Central Nervous System among elderly patients.It affect their quality of life drastically and millions of seniors are diagnosed...Parkinson’s disease(PD)is one of the primary vital degenerative diseases that affect the Central Nervous System among elderly patients.It affect their quality of life drastically and millions of seniors are diagnosed with PD every year worldwide.Several models have been presented earlier to detect the PD using various types of measurement data like speech,gait patterns,etc.Early identification of PD is important owing to the fact that the patient can offer important details which helps in slowing down the progress of PD.The recently-emerging Deep Learning(DL)models can leverage the past data to detect and classify PD.With this motivation,the current study develops a novel Colliding Bodies Optimization Algorithm with Optimal Kernel Extreme Learning Machine(CBO-OKELM)for diagnosis and classification of PD.The goal of the proposed CBO-OKELM technique is to identify whether PD exists or not.CBO-OKELM technique involves the design of Colliding Bodies Optimization-based Feature Selection(CBO-FS)technique for optimal subset of features.In addition,Water Strider Algorithm(WSA)with Kernel Extreme Learning Machine(KELM)model is also developed for the classification of PD.CBO algorithm is used to elect the optimal set of fea-tures whereas WSA is utilized for parameter tuning of KELM model which alto-gether helps in accomplishing the maximum PD diagnostic performance.The experimental analysis was conducted for CBO-OKELM technique against four benchmark datasets and the model portrayed better performance such as 95.68%,96.34%,92.49%,and 92.36%on Speech PD,Voice PD,Hand PD Mean-der,and Hand PD Spiral datasets respectively.展开更多
Purpose–In this paper,the C80 special coal gondola car was taken as the subject,and the load test data of the car body at the center plate,side bearing and coupler measured on the dedicated line were broken down to g...Purpose–In this paper,the C80 special coal gondola car was taken as the subject,and the load test data of the car body at the center plate,side bearing and coupler measured on the dedicated line were broken down to generate the random load component spectrums of the car body under five working conditions,namely expansion,bouncing,rolling,torsion and pitching according to the typical motion attitude of the car body.Design/methodology/approach–On the basis of processing the measured load data,the random load component spectrums were equivalently converted into sinusoidal load component spectrums for bench test based on the principle of pseudo-damage equivalence of load.Relying on the fatigue and vibration test bench of the whole railway wagon,by taking each sinusoidal load component spectrum as the simulation target,the time waveform replication(TWR)iteration technology was adopted to create the drive signal of each loading actuator required for the fatigue test of car body on the bench,and the drive signal was corrected based on the equivalence principle of measured stress fatigue damage to obtain the fatigue test loads of car body under various typical working conditions.Findings–The fatigue test results on the test bench were substantially close to the measured test results on the line.According to the results,the relative error between the fatigue damage of the car body on the test bench and the measured damage on the line was within the range of16.03%–27.14%.Originality/value–The bench test results basically reproduced the fatigue damage of the key parts of the car body on the line.展开更多
Creating proper B-spline surface models is a very challenging task for designers in car-body surface design.Due to the tensor-product structure of B-spline surface,some undesirable issues of the redundant control poin...Creating proper B-spline surface models is a very challenging task for designers in car-body surface design.Due to the tensor-product structure of B-spline surface,some undesirable issues of the redundant control points addition,incomplete surface definition and the difficulty of trimming boundary alteration frequently occur,when designing the car-body surface with B-spline surfaces in local-feature-lines construction,full-boundary-merging and visual surface trimming.A more efficient approach is proposed to design the car-body surface by replacing B-spline surface with classical T-spline surface.With the local refinability and multilateral definition offered by Tspline surface,those designing issues related with B-spline surface can be overcomed.Finally,modeling examples of the door,hood and rear-window are given to demonstrate the advantage of T-spline surface over B-spline surface in car-body surface design.展开更多
基金the CRRC Zhuzhou Locomotive Co.,Ltd.and Shanghai Railway Certification(Group)Co.,Ltd.This research was funded by the Major Research Project of CRRC(No.2022CYY007 and No.2020CCA094).
文摘Purpose–The principle of infinite life design currently directs fatigue resistance strategies for metro car bodies.However,this principle might not fully account for the dynamic influence of operational loads and the inevitable presence of defects.This study aims to integrate methods of service life estimation and residual life assessment,which are based on operational loads,into the existing infinite life verification framework to further ensure the operational safety of subway trains.Design/methodology/approach–Operational loads and fatigue loading spectra were determined through the field test.The material test was conducted to investigate characteristics of the fracture toughness and the crack growth rate.The fatigue strength of the metro car body was first verified using the finite element method and Moore–Kommers–Japer diagrams.The service life was then estimated by applying the Miner rule and high-cycle fatigue curves in a modified form of the Basquin equation.Finally,the residual life was assessed utilizing a fracture assessment diagram and a fitted curve of crack growth rate adhered to the Paris formula.Findings–Neither the maximum utilization factor nor the cumulative damage exceeds the threshold value of 1.0,the metro car body could meet the design life requirement of 30 years or 6.6 million km.However,three out of five fatigue key points were significantly influenced by the operational loads,which indicates that a single fatigue strength verification cannot achieve the infinite life design objective of the metro car body.For a projected design life of 30 years,the tolerance depth is 12.2 mm,which can underscore a relatively robust damage tolerance capability.Originality/value–The influence of operational loads on fatigue life was presented by the discrepancy analysis between fatigue strength verification results and service life estimation results.The fracture properties of butt-welded joints were tested and used for the damage tolerance assessment.The damage tolerance life can be effectively related by a newly developed equation in this study.It can be a valuable tool to provide the theoretical guidance and technical support for the structural improvements and maintenance decisions of the metro car body.
基金the National Natural Science Foundation of China(NSFC)under No.52308473the National KeyR&DProgram under No.2022YFB2603301the China Postdoctoral Science Foundation funded project(Certificate Number:2023M743895).
文摘Purpose–This study aimed to facilitate a rapid evaluation of track service status and vehicle ride comfort based on car body acceleration.Consequently,a low-cost,data-driven approach was proposed for analyzing speed-related acceleration limits in metro systems.Design/methodology/approach–A portable sensing terminal was developed to realize easy and efficient detection of car body acceleration.Further,field measurements were performed on a 51.95-km metro line.Data from 272 metro sections were tested as a case study,and a quantile regression method was proposed to fit the control limits of the car body acceleration at different speeds using the measured data.Findings–First,the frequency statistics of the measured data in the speed-acceleration dimension indicated that the car body acceleration was primarily concentrated within the constant speed stage,particularly at speeds of 15.4,18.3,and 20.9 m/s.Second,resampling was performed according to the probability density distribution of car body acceleration for different speed domains to achieve data balance.Finally,combined with the traditional linear relationship between speed and acceleration,the statistical relationships between the speed and car body acceleration under different quantiles were determined.We concluded the lateral/vertical quantiles of 0.8989/0.9895,0.9942/0.997,and 0.9998/0.993 as being excellent,good,and qualified control limits,respectively,for the lateral and vertical acceleration of the car body.In addition,regression lines for the speedrelated acceleration limits at other quantiles(0.5,0.75,2s,and 3s)were obtained.Originality/value–The proposed method is expected to serve as a reference for further studies on speedrelated acceleration limits in rail transit systems.
基金supported by the National Natural Science Foundation of China,Nos.82271447,81771382the National Key Research and Development Program of China,No.2019 YFE0115900the"New 20 Terms of Universities in Jinan,No.202228022 (all to ZZ)。
文摘α-Synuclein is a protein that mainly exists in the presynaptic terminals.Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases,including Parkinson’s disease.Aggregated and highly phospho rylated a-synuclein constitutes the main component of Lewy bodies in the brain,the pathological hallmark of Parkinson s disease.For decades,much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson s disease as a systemic disease.Recent evidence demonstrates that,at least in some patients,the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain.Injection of α-synuclein preformed fibrils into the gastrointestinal tra ct trigge rs the gutto-brain propagation of α-synuclein pathology.However,whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation.In this review,we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson’s disease.We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
文摘Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.
文摘Background: Loose bodies (LBs) within the knee joint are commonly encountered during clinical practice and are frequently observed during knee arthroscopy. The primary treatment involves the removal of loose bodies;however, their complete eradication is often challenging and may not address underlying diseases, leading to persistent symptoms and the risk of new loose body formation. Aim: This case report aims to present the findings and surgical management of a 52-year-old male with an unusually large osseous loose body in the knee joint and associated pathologies. Case Presentation: The patient, a 52-year-old male, experienced recurrent episodes of severe, sudden, and painful locking of the knee joint, leading to difficulties moving. A plain MRI study was conducted to evaluate the condition of the knee joint, which revealed various degenerative changes and the presence of a loose body. Subsequently, an arthroscopic examination was performed under general anesthesia, uncovering the presence of an abnormally large loose body, as well as other pathologies including chondropathy, meniscal degeneration, and Baker’s cyst. Conclusion: Loose bodies (LBs) in the knee joint pose significant challenges and may lead to debilitating symptoms. Timely diagnosis and appropriate surgical intervention are crucial for symptom relief and the prevention of further joint damage as arthroscopic excision. Comprehensive imaging has a vital role in guiding treatment decisions and optimizing patient outcomes. In this case, the removal of the loose body improved patient outcomes and helped prevent potential joint complications.
基金This work was supported by Humanities and Social Sciences Fund of Ministry of Education of China(No.19XJA7520012020)by National Social Science Fund of China(No.20BWW069).
文摘David’s Story by Zoë Wicomb addresses the complexities of representing female suffering and the limitations of traditional historical narratives in capturing the experiences of marginalized bodies.It challenges the grand narratives of national history by emphasizing the indispensable role of women’s experiences.Through characters like Dulcie and Rachael,Wicomb portrays the female body as a site of resistance and resilience,highlighting the need for more nuanced and inclusive ways of documenting history.Underscoring the inexpressibility of trauma and the limitations of language and representation,the novel self-reflexively acknowledges its own aporia of completing the narrative,embodying the ongoing struggle to capture the full breadth of human experience.
基金the Major Program of National Natural Science Foundation of China(No.41941019)Shaanxi Province Innovative Talent Promotion Plan-Science and Technology Innovation Team(No.2021TD-55)Central University Natural Science Innovation Team(No.300102262402)。
文摘Combined bodies of rock-like material and rock are widely encountered in geotechnical engineering,such as tunnels and mines.The existing theoretical models describing the stress-strain relationship of a combined body lack a binary feature.Based on effective medium theory,this paper presents the governing equation of the“elastic modulus”for combined and single bodies under triaxial compressive tests.A binary effective medium model is then established.Based on the compressive experiment of concretegranite combined bodies,the feasibility of determining the stress threshold based on crack axial strain is discussed,and the model is verified.The model is further extended to coal-rock combined bodies of more diverse types,and the variation laws of the compressive mechanical parameters are then discussed.The results show that the fitting accuracy of the model with the experimental curves of the concretegranite combined bodies and various types of coal-rock combined bodies are over 95%.The crack axial strain method can replace the crack volumetric strain method,which clarifies the physical meanings of the model parameters.The variation laws of matrix parameters and crack parameters are discussed in depth and are expected to be more widely used in geotechnical engineering.
基金This research was funded by Guangzhou Science and Technology Plan Projects(No.202002020066)the Young Scientists to the NSFC Application of Guangdong Provincial People’s Hospital(No.8210120306)the Open Foundation of the State Key Laboratory of Bioactive Seaweed Substance(No.SKL-BMSG2022-03)。
文摘Objective Vitamin D(VD)deficiency was reported to contribute to the progression of Crohn’s disease(CD)and affect the prognosis of CD patients.This study investigated the role of serum VD,body mass index(BMI),and tumor necrosis factor alpha(TNF-α)in the diagnosis of Crohn’s disease.Methods CD patients(n=76)and healthy subjects(n=76)were enrolled between May 2019 and December 2020.The serum 25-hydroxyvitamin D[25(OH)D]levels,BMI,and TNF-αlevels,together with other biochemical parameters,were assessed before treatment.The diagnostic efficacy of the single and joint detection of serum 25(OH)D,BMI,and TNF-αwas determined using receiver operating characteristic(ROC)curves.Results The levels of 25(OH)D,BMI,and nutritional indicators,including hemoglobin,total protein,albumin,and high-density lipoprotein cholesterol,were much lower,and the TNF-αlevels were much higher in the CD patients than in the healthy subjects(P<0.05 for all).The areas under the ROC curve for the single detection of 25(OH)D,BMI,and TNF-αwere 0.887,0.896,and 0.838,respectively,with the optimal cutoff values being 20.64 ng/mL,19.77 kg/m^(2),and 6.85 fmol/mL,respectively.The diagnostic efficacy of the joint detection of 25(OH)D,BMI,and TNF-αwas the highest,with an area under the ROC curve of 0.988(95%CI:0.968–1.000).Conclusion The joint detection of 25(OH)D,TNF-α,and BMI showed high sensitivity,specificity,and accuracy in CD diagnosis;thus,it would be effective for the diagnosis of CD in clinical practice.
基金supported by National Natural Science Foundation of China(Grant No.19832020)National Science Fund of Outstanding Youths of China (Grant No.10125208)+1 种基金Chongqing Municipal Programs for Science and Technology Development of China(Grant No.CSTC, 2007AA4008)National Key Technology R&D Program of China(Grant No.2006BA104B04-2)
文摘Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. However, the lightweight structures must show the improved capability for structural rigidity and crash energy absorption. Advanced high strength steels are attractive materials to achieve higher strength for energy absorption and reduce weight of vehicles. Currently, many research works focus on component level axial crash testing and simulation of high strength steels. However, the effects of high strength steel parts to the impact of auto body are not considered. The goal of this research is to study the application of hot forming high strength steel(HFHSS) in order to evaluate the potential using in vehicle design for lightweight and passive safety. The performance of HFHSS is investigated by using both experimental and analytical techniques. In particular, the focus is on HFHSS which may have potential to enhance the passive safety for lightweight auto body. Automotive components made of HFHSS and general high strength steel(GHSS) are considered in this study. The material characterization of HFHSS is carried out through material experiments. The finite element method, in conjunction with the validated model is used to simulate the side impact of a car with GHSS and HFHSS parts according to China New Car Assessment Programme(C-NCAP) crash test. The deformation and acceleration characteristics of car body are analyzed and the injuries of an occupant are calculated. The results from the simulation analyses of HFHSS are compared with those of GHSS. The comparison indicates that the HFHSS parts on car body enhance the passive safety for the lightweight car body in side impact. Parts of HFHSS reduce weight of vehicle through thinner thickness offering higher strength of parts. Passive safety of lightweight car body is improved through reduction of crash deformation on car body by the application of HFHSS parts. The experiments and simulation are conducted to the HFHSS parts on auto body. The results demonstrate the feasibility of the application of HFHSS materials on automotive components for improved capability of passive safety and lightweight.
基金This material is based on the work supported by the U.S.Department of Energy under Award number DE-EE0002323.
文摘Car body design in view of structural performance and lightweighting is a challenging task due to all the performance targets that must be satisfied such as vehicle safety and ride quality.In this paper,material replacement along with multidisciplinary design optimization strategy is proposed to develop a lightweight car body structure that satisfies the crash and vibration criteria while minimizing weight.Through finite element simulations,full frontal,offset frontal,and side crashes of a full car model are evaluated for peak acceleration,intrusion distance,and the internal energy absorbed by the structural parts.In addition,the first three fundamental natural frequencies are combined with the crash metrics to form the design constraints.The wall thicknesses of twenty-two parts are considered as the design variables.Latin Hypercube Sampling is used to sample the design space,while Radial Basis Function methodology is used to develop surrogate models for the selected crash responses at multiple sites as well as the first three fundamental natural frequencies.A nonlinear surrogate-based optimization problem is formulated for mass minimization under crash and vibration constraints.Using Sequential Quadratic Programming,the design optimization problem is solved with the results verified by finite element simulations.The performance of the optimum design with magnesium parts shows significant weight reduction and better performance compared to the baseline design.
文摘BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevention strategies for childhood obesity.Thirty normal-weight and thirty age-and sex-matched obese children were included.Questionnaires and body measurements were collected,and fecal samples underwent 16S rDNA sequencing.Significant differences in body mass index(BMI)and body-fat percentage were observed between the groups.Analysis of gut microbiota diversity revealed lowerα-diversity in obese children.Differences in gut microbiota composition were found between the two groups.Prevotella and Firmicutes were more abundant in the obese group,while Bacteroides and Sanguibacteroides were more prevalent in the control group.AIM To identify the characteristic gut genera in obese and normal-weight children(8-12-year-old)using 16S rDNA sequencing,and provide a basis for subsequent mechanistic studies and prevention strategies for childhood obesity.METHODS Thirty each normal-weight,1:1 matched for age and sex,and obese children,with an obese status from 2020 to 2022,were included in the control and obese groups,respectively.Basic information was collected through questionnaires and body measurements were obtained from both obese and normal-weight children.Fecal samples were collected from both groups and subjected to 16S rDNA sequencing using an Illumina MiSeq sequencing platform for gut microbiota diversity analysis.RESULTS Significant differences in BMI and body-fat percentage were observed between the two groups.The Ace and Chao1 indices were significantly lower in the obese group than those in the control group,whereas differences were not significant in the Shannon and Simpson indices.Kruskal-Wallis tests indicated significant differences in unweighted and weighted UniFrac distances between the gut microbiota of normal-weight and obese children(P<0.01),suggesting substantial disparities in both the species and quantity of gut microbiota between the two groups.Prevotella,Firmicutes,Bacteroides,and Sanguibacteroides were more abundant in the obese and control groups,respectively.Heatmap results demonstrated significant differences in the gut microbiota composition between obese and normal-weight children.CONCLUSION Obese children exhibited lowerα-diversity in their gut microbiota than did the normal-weight children.Significant differences were observed in the composition of gut microbiota between obese and normal-weight children.
基金Taif University Researchers Supporting Project number(TURSP-2020/161),Taif University,Taif,Saudi Arabia.
文摘Parkinson’s disease(PD)is one of the primary vital degenerative diseases that affect the Central Nervous System among elderly patients.It affect their quality of life drastically and millions of seniors are diagnosed with PD every year worldwide.Several models have been presented earlier to detect the PD using various types of measurement data like speech,gait patterns,etc.Early identification of PD is important owing to the fact that the patient can offer important details which helps in slowing down the progress of PD.The recently-emerging Deep Learning(DL)models can leverage the past data to detect and classify PD.With this motivation,the current study develops a novel Colliding Bodies Optimization Algorithm with Optimal Kernel Extreme Learning Machine(CBO-OKELM)for diagnosis and classification of PD.The goal of the proposed CBO-OKELM technique is to identify whether PD exists or not.CBO-OKELM technique involves the design of Colliding Bodies Optimization-based Feature Selection(CBO-FS)technique for optimal subset of features.In addition,Water Strider Algorithm(WSA)with Kernel Extreme Learning Machine(KELM)model is also developed for the classification of PD.CBO algorithm is used to elect the optimal set of fea-tures whereas WSA is utilized for parameter tuning of KELM model which alto-gether helps in accomplishing the maximum PD diagnostic performance.The experimental analysis was conducted for CBO-OKELM technique against four benchmark datasets and the model portrayed better performance such as 95.68%,96.34%,92.49%,and 92.36%on Speech PD,Voice PD,Hand PD Mean-der,and Hand PD Spiral datasets respectively.
基金supported by the Science and Technology Research and Development Foundation of the Ministry of Science and Technology(Grant No.2020YFB1200200ZL)the Scientific Research Program of the Department of Education of Liaoning Province(Grant No.2021LJKZ1298)the Science and Technology Research and Development Foundation of CRRC(Grant No.2021CHA014).
文摘Purpose–In this paper,the C80 special coal gondola car was taken as the subject,and the load test data of the car body at the center plate,side bearing and coupler measured on the dedicated line were broken down to generate the random load component spectrums of the car body under five working conditions,namely expansion,bouncing,rolling,torsion and pitching according to the typical motion attitude of the car body.Design/methodology/approach–On the basis of processing the measured load data,the random load component spectrums were equivalently converted into sinusoidal load component spectrums for bench test based on the principle of pseudo-damage equivalence of load.Relying on the fatigue and vibration test bench of the whole railway wagon,by taking each sinusoidal load component spectrum as the simulation target,the time waveform replication(TWR)iteration technology was adopted to create the drive signal of each loading actuator required for the fatigue test of car body on the bench,and the drive signal was corrected based on the equivalence principle of measured stress fatigue damage to obtain the fatigue test loads of car body under various typical working conditions.Findings–The fatigue test results on the test bench were substantially close to the measured test results on the line.According to the results,the relative error between the fatigue damage of the car body on the test bench and the measured damage on the line was within the range of16.03%–27.14%.Originality/value–The bench test results basically reproduced the fatigue damage of the key parts of the car body on the line.
文摘Creating proper B-spline surface models is a very challenging task for designers in car-body surface design.Due to the tensor-product structure of B-spline surface,some undesirable issues of the redundant control points addition,incomplete surface definition and the difficulty of trimming boundary alteration frequently occur,when designing the car-body surface with B-spline surfaces in local-feature-lines construction,full-boundary-merging and visual surface trimming.A more efficient approach is proposed to design the car-body surface by replacing B-spline surface with classical T-spline surface.With the local refinability and multilateral definition offered by Tspline surface,those designing issues related with B-spline surface can be overcomed.Finally,modeling examples of the door,hood and rear-window are given to demonstrate the advantage of T-spline surface over B-spline surface in car-body surface design.