In this editorial,I comment on the article by Zhang et al.To emphasize the importance of the topic,I discuss the relationship between the use of smart medical devices and mental health.Smart medical services have the ...In this editorial,I comment on the article by Zhang et al.To emphasize the importance of the topic,I discuss the relationship between the use of smart medical devices and mental health.Smart medical services have the potential to positively influence mental health by providing monitoring,insights,and inter-ventions.However,they also come with challenges that need to be addressed.Understanding the primary purpose for which individuals use these smart tech-nologies is essential to tailoring them to specific mental health needs and prefe-rences.展开更多
A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the bas...A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the basis of minimum safety distances with parts of the drivers' abnormal behavior in a panic emergency situation. A thorough questionnaire survey is undertaken among drivers of different ages. Based on the results from the survey, a safety-distance car-following model is formulated by taking into account two new parameters: a differential distributing coefficient and a driver' s experiential decision coefficient, which are used to reflect variations of driving behaviors under an emergency evacuation situation when compared with regular conditions. The formulation and derivation of the new model, as well as its properties and applicability are discussed. A case study is presented to compare the car-following trajectories using observed data under regular peak-hour traffic conditions and theoretical EECM results. The results indicate the consistency of the analysis of assumptions on the EECM and observations.展开更多
The full velocity difference model proposed by Jiang et al. [2001 Phys. Rev. E 64 017101] has been improved by introducing velocity anticipation. Velocity anticipation means the follower estimates the future velocity ...The full velocity difference model proposed by Jiang et al. [2001 Phys. Rev. E 64 017101] has been improved by introducing velocity anticipation. Velocity anticipation means the follower estimates the future velocity of the leader. The stability condition of the new model is obtained by using the linear stability theory. Theoretical results show that the stability region increases when we increase the anticipation time interval. The mKdV equation is derived to describe the kink-antikink soliton wave and obtain the coexisting stability line. The delay time of car motion and kinematic wave speed at jam density are obtained in this modeh Numerical simulations exhibit that when we increase the anticipation time interval enough, the new model could avoid accidents under urgent braking cases. Also, the traffic jam could be suppressed by considering the anticipation velocity. All results demonstrate that this model is an improvement on the full velocity difference model.展开更多
We introduce a velocity-difference-separation model that modifies the previous models in the literature. The improvement of this new model over the previous ones lies in that it not only theoretically retains many str...We introduce a velocity-difference-separation model that modifies the previous models in the literature. The improvement of this new model over the previous ones lies in that it not only theoretically retains many strong points of the previous ones, but also performs more realistically than others in the dynamical evolution of congestion. Furthermore, the proposed model is investigated with analytic and numerical methods, with the finding that it can demonstrate some complex physical features observed in real traffic such as the existence of three phases: free flow, synchronized flow, and wide moving jam; sudden flow drop in flow-density plane; and traffic hysteresis in transition between the free and the synchronized flow.展开更多
The Car-following models is a kind of microscopic simulation model for vehicular traffic, which describe the one-by-one following behaviors of vehicles in the same traffic lane. As a common traffic phenomenon, followi...The Car-following models is a kind of microscopic simulation model for vehicular traffic, which describe the one-by-one following behaviors of vehicles in the same traffic lane. As a common traffic phenomenon, following behavior is of great importance in the micro-study of intelligent traffic control. Compared with other traffic-flow models, car-following model embodies the human factors and reflects the real traffic situation in a better way. This paper gives a systematic review of the development and actuality of car-following models by introducing and analyzing in detail the advantages and disadvantages of GHR model, OV model, CA model and fuzzy-logic model. In addition, local stability and asymptotic stability of car-following models are discussed in this paper.展开更多
In this paper, we present a new car-following model by taking into account the effects of the traffic interruption probability on the car-following behaviour of the following vehicle. The stability condition of the mo...In this paper, we present a new car-following model by taking into account the effects of the traffic interruption probability on the car-following behaviour of the following vehicle. The stability condition of the model is obtained by using the linear stability theory. The modified Korteweg-de Vries (KdV) equation is constructed and solved, and three types of traffic flows in the headway sensitivity space-stable, metastable, and unstable--are classified. Both the analytical and simulation results show that the traffic interruption probability indeed has an influence on driving behaviour, and the consideration of traffic interruption probability in the car-following model could stabilize traffic flow.展开更多
Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary ...Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary condition. The effect of the safe headway on the traffic system is considered. According to the control theory, the condition under which traffic jams can be suppressed is analyzed. The results are compared with the previous results concerning congestion control. The simulations show that the suppression performance of our scheme on traffic jams is better than those of the previous schemes, although all the schemes can suppress traffic jams. The simulation results are consistent with theoretical analyses.展开更多
This paper attempts to introduce an improved difference model that modifies a car-following model, which takes the next-nearest-neighbor interaction into account. The hnprovement of this model over the previous one li...This paper attempts to introduce an improved difference model that modifies a car-following model, which takes the next-nearest-neighbor interaction into account. The hnprovement of this model over the previous one lies in that it performs more realistically in the dynamical motion for small delay time. The traffic behavior of the improved model is investigated with analytic and numerical methods with the finding that the new consideration could further stabilize traffic flow. And some simulation tests verify that the proposed model can demonstrate some complex physical features observed recently in real traffic such as the existence of three phases: free flow, coexisting flow, and jam flow; spontaneous formation of density waves; sudden flow drop in flow-density plane; traffic hysteresis in transition between the free and the coexisting flow. Furthermore, th.e improved model also predicts that the stable state to relative density in the coexisting flow is insusceptible to noise.展开更多
Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the ve...Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the velocity differences of the two vehicles in front is put forward. The condition under which the traffic jam can be contained is analyzed. The results axe compared with that presented by Konishi et al [Phys. Rev. 1999 E 60 4000-4007]. The simulation results show that the temporal behavior obtained by our method is better than that by the Konishi's et al. method, although both the methods could suppress the traffic jam. The simulation results are consistent with the theoretical analysis.展开更多
Based on the pioneering work of Konishi et al., in consideration of the influence of drivers' steady desired speed ef/ect on the traffic flow, we develop a new coupled map car-following model in the real world. By us...Based on the pioneering work of Konishi et al., in consideration of the influence of drivers' steady desired speed ef/ect on the traffic flow, we develop a new coupled map car-following model in the real world. By use of the control theory, the stability condition of our model is derived. The validity of the present theoretical scheme is verified via numerical simulation, confirming the correctness of our theoretical analysis.展开更多
A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the targ...A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones展开更多
A new car-following model is proposed by considering information from a number of preceding vehicles with intervehicle communication. A supernetwork architecture is first described, which has two layers: a traffic ne...A new car-following model is proposed by considering information from a number of preceding vehicles with intervehicle communication. A supernetwork architecture is first described, which has two layers: a traffic network and a communication network. The two networks interact with and depend on each other. The error dynamic system around the steady state of the model is theoretically analyzed and some nonjam criteria are derived. A simple control signal is added to the model to analyze the criteria of suppressing traffic jams. The corresponding numerical simulations confirm the correctness of the theoretical analysis. Compared with previous studies concerning coupled map models, the controlled model proposed in this paper is more reasonable and also more effective in the sense that it takes into account the formation of traffic congestion.展开更多
The performances of a well-known GHR car-following model was investigated by using numerical simulations in describing the acceleration and deceleration process induced by the motion of a leading car. It is shown that...The performances of a well-known GHR car-following model was investigated by using numerical simulations in describing the acceleration and deceleration process induced by the motion of a leading car. It is shown that in GHR model vehicle is allowed to run arbitrarily close together if their speed are identical,and it waves aside even though the separation is larger than its desired distance. Based on these investigations, a modified GHR model which features a new nonlinear term which attempts to adjust the inter-vehicle spacing to a certain desired value was proposed accordingly to overcome these deficiencies. In addition, the analysis of the additive nonlinear term and steady-state flow of the new model were studied to prove its rationality.展开更多
Objectives:To describe the characteristics and relationships of social isolation and health promoting behaviors of Chinese older adults with different health statuses.Methods:Totally 485 older adults were recruited.Th...Objectives:To describe the characteristics and relationships of social isolation and health promoting behaviors of Chinese older adults with different health statuses.Methods:Totally 485 older adults were recruited.They were divided into three groups based on their health status:healthy group(n=72),group with one disease(n=183)and group with multimorbidity(n=230).Lubben Social Network Scale-6 and Health-Promoting Lifestyle Profile II were used to measure their social isolation and health-promoting behaviors,respectively.Results:Among the aged with one disease or multimorbidity,30.6%(56/183)and 31.7%(73/230)were socially isolated,respectively,based on the score of the Lubben Social Network Scale-6.The three groups differed significantly in health-promoting behaviors and scores on several subscales.The group with multimorbidity exhibited more social isolation and fewer health-promoting behaviors than other groups.Social isolation was among the factors adversely affecting health-promoting behaviors in older adults.Conclusions:Health care providers should help older adults with multimorbidity preserve the remaining abilities to improve health-promoting behaviors.Meanwhile,it is important to support healthy older adults to increase self-responsibility to achieve healthy aging.展开更多
In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by th...In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems.展开更多
The decision-making under complex urban environment become one of the key issues that restricts the rapid development of the autonomous vehicles. The difficulty in making timely and accurate decisions like human being...The decision-making under complex urban environment become one of the key issues that restricts the rapid development of the autonomous vehicles. The difficulty in making timely and accurate decisions like human beings under highly dynamic traffic environment is a major challenge for autonomous driving. Car-following has been regarded as the simplest but essential driving behavior among driving tasks and has received extensive attention from researchers around the world. This work addresses this problem and proposes a novel method RSAN(rough-set artificial neural network) to learn the decisions from excellent human drivers. A virtual urban traffic environment was built by Pre Scan and driving simulation was conducted to obtain a broad set of relevant data such as experienced drivers' behavior data and surrounding vehicles' motion data. Then, rough set was used to preprocess these data to extract the key influential factors on decision and reduce the impact of uncertain data and noise data. And the car-following decision was learned by neural network in which key factor was the input and acceleration was the output. The result shows the better convergence speed and the better decision accuracy of RSAN than ANN. Findings of this work contributes to the empirical understanding of driver's decision-making process and it provides a theoretical basis for the study of car-following decision-making under complex and dynamic environment.展开更多
In observing driver courtesy towards pedestrians at unsignalized crosswalks, a behavioral model was adopted in a simulation based on the GM Car-Following Model. The SIMI Motion Software was used to extract the vehicle...In observing driver courtesy towards pedestrians at unsignalized crosswalks, a behavioral model was adopted in a simulation based on the GM Car-Following Model. The SIMI Motion Software was used to extract the vehicle operation data from Wenyi South Road and Hanyuan Road in Xi'an City. The parameters of the GM Car-Following Model were calibrated by genetic algorithm. The road simulation environment based on the Car-Following Model was constructed by MATLAB. In the case of no stopping, uniform deceleration avoidance with advance notice, emergency brake avoidance without advance notice, changes such as the displacement of the Car-Following queue, headway, speed, acceleration, and deceleration were analyzed by numerical simulation. The results show that when there is advance notice before the crosswalk, the minimum headway distances of Car1-Car2, Car2-Car3, Car3-Car4 and Car4-Car5 are 7.09 m, 7.38 m, 7.65 m, 7.91 m, and the average rates of change of the headway during deceleration are 0.78 m/s, 0.74 m/s, 0.71 m/s, 0.68 m/s respectively;in the absence of advance notice before the crosswalk, the minimum headway distances of Car1-Car2, Car2-Car3, Car3-Car4 and Car4-Car5 are 7.28 m, 7.75 m, 8.19 m, 8.59 m, and the average rates of change of the headway during deceleration are 1.57 m/s, 1.25 m/s, 1.04 m/s, 0.96 m/s, respectively. Therefore, in order to effectively prevent the occurrence of vehicle rear-end events, it's necessary to set traffic signs and markings on the preceding section of the intersection or road exhibiting behavioral comity.展开更多
Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal ve...Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal velocity function V^opt, which is considered as the desired velocity function for train movement control under different control conditions. In order to test the proposed model, we simulate and analyze the trajectories of train movements, moreover, discuss the relationship curves between the train allowable velocity and the site of objective point in detail. Analysis results indicate that the proposed model can well capture some realistic futures of train movement control.展开更多
Modeling time headways between vehicles has attracted increasing interest in the traffic flow research field recently, because the corresponding statistics help to reveal the intrinsic interactions governing the vehic...Modeling time headways between vehicles has attracted increasing interest in the traffic flow research field recently, because the corresponding statistics help to reveal the intrinsic interactions governing the vehicle dynamics. However, most previous micro-simulation models cannot yield the observed log-normal distributed headways. This paper designs a new car-following model inspired by the Galton board to reproduce the observed time-headway distributions as well as the complex traffic phenomena. The consistency between the empirical data and the simulation results indicates that this new car-following model provides a reasonable description of the car-following behaviours.展开更多
This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane. Traffic chaos is a promising fie...This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane. Traffic chaos is a promising field, and chaos theory has been applied to identify and predict its chaotic movement. A simulated traffic flow is generated using a car-following model( GM model), and the distance between two cars is investigated for its dynamic properties. A positive Lyapunov exponent confirms the existence of chaotic behavior in the GM model. A new algorithm using a RBF NN (radial basis function neural network) is proposed to predict this traffic chaos. The experiment shows that the chaotic degree and predictable degree are determined by the first Lyapunov exponent. The algorithm proposed in this paper can be generalized to recognize and predict the chaos of short-time traffic flow series展开更多
文摘In this editorial,I comment on the article by Zhang et al.To emphasize the importance of the topic,I discuss the relationship between the use of smart medical devices and mental health.Smart medical services have the potential to positively influence mental health by providing monitoring,insights,and inter-ventions.However,they also come with challenges that need to be addressed.Understanding the primary purpose for which individuals use these smart tech-nologies is essential to tailoring them to specific mental health needs and prefe-rences.
基金The National Key Technology R&D Program of China during the 10th Five-Year Plan Period(No.2005BA41B11)the National Natural Science Foundation of China(No.50578003)
文摘A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the basis of minimum safety distances with parts of the drivers' abnormal behavior in a panic emergency situation. A thorough questionnaire survey is undertaken among drivers of different ages. Based on the results from the survey, a safety-distance car-following model is formulated by taking into account two new parameters: a differential distributing coefficient and a driver' s experiential decision coefficient, which are used to reflect variations of driving behaviors under an emergency evacuation situation when compared with regular conditions. The formulation and derivation of the new model, as well as its properties and applicability are discussed. A case study is presented to compare the car-following trajectories using observed data under regular peak-hour traffic conditions and theoretical EECM results. The results indicate the consistency of the analysis of assumptions on the EECM and observations.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB705500)the National Natural Science Foundation of China (Grant Nos. 70501004, 70701004 and 70631001)the Program for New Century Talents in University,Ministry of Education, China (Grant No. NCET-07-0057)
文摘The full velocity difference model proposed by Jiang et al. [2001 Phys. Rev. E 64 017101] has been improved by introducing velocity anticipation. Velocity anticipation means the follower estimates the future velocity of the leader. The stability condition of the new model is obtained by using the linear stability theory. Theoretical results show that the stability region increases when we increase the anticipation time interval. The mKdV equation is derived to describe the kink-antikink soliton wave and obtain the coexisting stability line. The delay time of car motion and kinematic wave speed at jam density are obtained in this modeh Numerical simulations exhibit that when we increase the anticipation time interval enough, the new model could avoid accidents under urgent braking cases. Also, the traffic jam could be suppressed by considering the anticipation velocity. All results demonstrate that this model is an improvement on the full velocity difference model.
文摘We introduce a velocity-difference-separation model that modifies the previous models in the literature. The improvement of this new model over the previous ones lies in that it not only theoretically retains many strong points of the previous ones, but also performs more realistically than others in the dynamical evolution of congestion. Furthermore, the proposed model is investigated with analytic and numerical methods, with the finding that it can demonstrate some complex physical features observed in real traffic such as the existence of three phases: free flow, synchronized flow, and wide moving jam; sudden flow drop in flow-density plane; and traffic hysteresis in transition between the free and the synchronized flow.
文摘The Car-following models is a kind of microscopic simulation model for vehicular traffic, which describe the one-by-one following behaviors of vehicles in the same traffic lane. As a common traffic phenomenon, following behavior is of great importance in the micro-study of intelligent traffic control. Compared with other traffic-flow models, car-following model embodies the human factors and reflects the real traffic situation in a better way. This paper gives a systematic review of the development and actuality of car-following models by introducing and analyzing in detail the advantages and disadvantages of GHR model, OV model, CA model and fuzzy-logic model. In addition, local stability and asymptotic stability of car-following models are discussed in this paper.
基金supported by the National Natural Science Foundation of China (Grant Nos 70701002 and 70521001)the National Basic Research Program of China (Grant No 2006CB705503)the Research Grants Council of the Hong Kong Special Administrative Region of China (Grant No HKU7187/05E)
文摘In this paper, we present a new car-following model by taking into account the effects of the traffic interruption probability on the car-following behaviour of the following vehicle. The stability condition of the model is obtained by using the linear stability theory. The modified Korteweg-de Vries (KdV) equation is constructed and solved, and three types of traffic flows in the headway sensitivity space-stable, metastable, and unstable--are classified. Both the analytical and simulation results show that the traffic interruption probability indeed has an influence on driving behaviour, and the consideration of traffic interruption probability in the car-following model could stabilize traffic flow.
基金supported by the Major Consulting Project of Chinese Academy of Engineering (Grant No. 2012-ZX-22)the Natural Science Foundation of Chongqing Science & Technology Commission of China (Grant No. 2012jjB40002)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120191110047)the Engineering Center Research Program of Chongqing Science & Technology Commission of China (Grant No. 2011pt-gc30005)the Key Technology R&D Project of Chongqing Science & Technology Commission of China (Grant Nos. 2011AB2052 and 2012gg-yyjsB30001)
文摘Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary condition. The effect of the safe headway on the traffic system is considered. According to the control theory, the condition under which traffic jams can be suppressed is analyzed. The results are compared with the previous results concerning congestion control. The simulations show that the suppression performance of our scheme on traffic jams is better than those of the previous schemes, although all the schemes can suppress traffic jams. The simulation results are consistent with theoretical analyses.
基金The project supported by the Key Foundation Project of Shanghai under Grant No. 032912066
文摘This paper attempts to introduce an improved difference model that modifies a car-following model, which takes the next-nearest-neighbor interaction into account. The hnprovement of this model over the previous one lies in that it performs more realistically in the dynamical motion for small delay time. The traffic behavior of the improved model is investigated with analytic and numerical methods with the finding that the new consideration could further stabilize traffic flow. And some simulation tests verify that the proposed model can demonstrate some complex physical features observed recently in real traffic such as the existence of three phases: free flow, coexisting flow, and jam flow; spontaneous formation of density waves; sudden flow drop in flow-density plane; traffic hysteresis in transition between the free and the coexisting flow. Furthermore, th.e improved model also predicts that the stable state to relative density in the coexisting flow is insusceptible to noise.
基金Project supported by the National Key Basic Research Program of China (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 10532060, 10602025 and 10802042)+1 种基金the Natural Science Foundation of Ningbo (Grant Nos 2007A610050, 2009A610014 and 2009A610154)K.C. Wong Magna Fund in Ningbo University
文摘Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the velocity differences of the two vehicles in front is put forward. The condition under which the traffic jam can be contained is analyzed. The results axe compared with that presented by Konishi et al [Phys. Rev. 1999 E 60 4000-4007]. The simulation results show that the temporal behavior obtained by our method is better than that by the Konishi's et al. method, although both the methods could suppress the traffic jam. The simulation results are consistent with the theoretical analysis.
基金Project supported by the Major Consulting Project of Chinese Academy of Engineering(Grant No.2012-ZX-22)the National Natural Science Foundation of China(Grant No.71201178)+3 种基金the Natural Science Foundation of Chongqing City,China(Grant No.cstc2012jjB40002)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120191110047)the Engineering Center Research Program of Chongqing City,China(Grant No.cstc2011pt-gc30005)the Key Technology R&D Project of Chongqing City,China(Grant Nos.cstc2011AB2052 and cstc2012gg-yyjsB30001)
文摘Based on the pioneering work of Konishi et al., in consideration of the influence of drivers' steady desired speed ef/ect on the traffic flow, we develop a new coupled map car-following model in the real world. By use of the control theory, the stability condition of our model is derived. The validity of the present theoretical scheme is verified via numerical simulation, confirming the correctness of our theoretical analysis.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11072117 and 61074142)the Scientific Research Fund of the Educational Department of Zhejiang Province,China (Grant No.Z201119278)+2 种基金the Natural Science Foundation of Ningbo,China (Grant Nos.2012A610152 and 2012A610038)the Disciplinary Project of Ningbo,China (Grant No.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China
文摘A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones
基金supported by the National Natural Science Foundation of China (Grant Nos. 61174158,61034004,91024023,and 61272271)the Special Fund from the China Postdoctoral Science Foundation (Grant No. 201104286)+3 种基金the China Postdoctoral Science Foundation (Grant No. 2012M510117)the Natural Science Foundation Program of Shanghai (Grant No. 12ZR1434000)the Fundamental Research Funds for the Central Universitiesthe Hong Kong Research Grants Council (Grant No. GRF Grant CityU1109/12)
文摘A new car-following model is proposed by considering information from a number of preceding vehicles with intervehicle communication. A supernetwork architecture is first described, which has two layers: a traffic network and a communication network. The two networks interact with and depend on each other. The error dynamic system around the steady state of the model is theoretically analyzed and some nonjam criteria are derived. A simple control signal is added to the model to analyze the criteria of suppressing traffic jams. The corresponding numerical simulations confirm the correctness of the theoretical analysis. Compared with previous studies concerning coupled map models, the controlled model proposed in this paper is more reasonable and also more effective in the sense that it takes into account the formation of traffic congestion.
基金Key Foundation Project of Shanghai (No.032912066)
文摘The performances of a well-known GHR car-following model was investigated by using numerical simulations in describing the acceleration and deceleration process induced by the motion of a leading car. It is shown that in GHR model vehicle is allowed to run arbitrarily close together if their speed are identical,and it waves aside even though the separation is larger than its desired distance. Based on these investigations, a modified GHR model which features a new nonlinear term which attempts to adjust the inter-vehicle spacing to a certain desired value was proposed accordingly to overcome these deficiencies. In addition, the analysis of the additive nonlinear term and steady-state flow of the new model were studied to prove its rationality.
文摘Objectives:To describe the characteristics and relationships of social isolation and health promoting behaviors of Chinese older adults with different health statuses.Methods:Totally 485 older adults were recruited.They were divided into three groups based on their health status:healthy group(n=72),group with one disease(n=183)and group with multimorbidity(n=230).Lubben Social Network Scale-6 and Health-Promoting Lifestyle Profile II were used to measure their social isolation and health-promoting behaviors,respectively.Results:Among the aged with one disease or multimorbidity,30.6%(56/183)and 31.7%(73/230)were socially isolated,respectively,based on the score of the Lubben Social Network Scale-6.The three groups differed significantly in health-promoting behaviors and scores on several subscales.The group with multimorbidity exhibited more social isolation and fewer health-promoting behaviors than other groups.Social isolation was among the factors adversely affecting health-promoting behaviors in older adults.Conclusions:Health care providers should help older adults with multimorbidity preserve the remaining abilities to improve health-promoting behaviors.Meanwhile,it is important to support healthy older adults to increase self-responsibility to achieve healthy aging.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11372166,11372147,61074142,and 11072117)the Scientific Research Fund of Zhejiang Province,China(Grant No.LY13A010005)+1 种基金the Disciplinary Project of Ningbo City,China(Grant No.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China,and the Government of the Hong Kong Administrative Region,China(Grant No.119011)
文摘In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems.
基金Project(9142020013)support by the National Natural Science Foundation of China
文摘The decision-making under complex urban environment become one of the key issues that restricts the rapid development of the autonomous vehicles. The difficulty in making timely and accurate decisions like human beings under highly dynamic traffic environment is a major challenge for autonomous driving. Car-following has been regarded as the simplest but essential driving behavior among driving tasks and has received extensive attention from researchers around the world. This work addresses this problem and proposes a novel method RSAN(rough-set artificial neural network) to learn the decisions from excellent human drivers. A virtual urban traffic environment was built by Pre Scan and driving simulation was conducted to obtain a broad set of relevant data such as experienced drivers' behavior data and surrounding vehicles' motion data. Then, rough set was used to preprocess these data to extract the key influential factors on decision and reduce the impact of uncertain data and noise data. And the car-following decision was learned by neural network in which key factor was the input and acceleration was the output. The result shows the better convergence speed and the better decision accuracy of RSAN than ANN. Findings of this work contributes to the empirical understanding of driver's decision-making process and it provides a theoretical basis for the study of car-following decision-making under complex and dynamic environment.
基金Supported by the National Natural Science Foundation of China(51678132)the Key Research and Development Project of Science and Technology Department in Jiangxi Province(20161BBG70044)the Fundamental Research Funds for the Central Universities of China(300102218521)
文摘In observing driver courtesy towards pedestrians at unsignalized crosswalks, a behavioral model was adopted in a simulation based on the GM Car-Following Model. The SIMI Motion Software was used to extract the vehicle operation data from Wenyi South Road and Hanyuan Road in Xi'an City. The parameters of the GM Car-Following Model were calibrated by genetic algorithm. The road simulation environment based on the Car-Following Model was constructed by MATLAB. In the case of no stopping, uniform deceleration avoidance with advance notice, emergency brake avoidance without advance notice, changes such as the displacement of the Car-Following queue, headway, speed, acceleration, and deceleration were analyzed by numerical simulation. The results show that when there is advance notice before the crosswalk, the minimum headway distances of Car1-Car2, Car2-Car3, Car3-Car4 and Car4-Car5 are 7.09 m, 7.38 m, 7.65 m, 7.91 m, and the average rates of change of the headway during deceleration are 0.78 m/s, 0.74 m/s, 0.71 m/s, 0.68 m/s respectively;in the absence of advance notice before the crosswalk, the minimum headway distances of Car1-Car2, Car2-Car3, Car3-Car4 and Car4-Car5 are 7.28 m, 7.75 m, 8.19 m, 8.59 m, and the average rates of change of the headway during deceleration are 1.57 m/s, 1.25 m/s, 1.04 m/s, 0.96 m/s, respectively. Therefore, in order to effectively prevent the occurrence of vehicle rear-end events, it's necessary to set traffic signs and markings on the preceding section of the intersection or road exhibiting behavioral comity.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60634010 and 60776829the State Key Laboratory of Rail Traffic Control and Safety (Contract No.RCS2008ZZ001 and RCS2010ZZ001),Beijing Jiaotong University
文摘Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal velocity function V^opt, which is considered as the desired velocity function for train movement control under different control conditions. In order to test the proposed model, we simulate and analyze the trajectories of train movements, moreover, discuss the relationship curves between the train allowable velocity and the site of objective point in detail. Analysis results indicate that the proposed model can well capture some realistic futures of train movement control.
基金supported partly by the National Basic Research Program of China (Grant No. 2006CB705506)the National Hi-Tech Research and Development Program of China (Grant Nos. 2006AA11Z215 and 2007AA11Z222)the National Natural Science Foundation of China (Grant Nos. 50708055, 60774034 and 10872194)
文摘Modeling time headways between vehicles has attracted increasing interest in the traffic flow research field recently, because the corresponding statistics help to reveal the intrinsic interactions governing the vehicle dynamics. However, most previous micro-simulation models cannot yield the observed log-normal distributed headways. This paper designs a new car-following model inspired by the Galton board to reproduce the observed time-headway distributions as well as the complex traffic phenomena. The consistency between the empirical data and the simulation results indicates that this new car-following model provides a reasonable description of the car-following behaviours.
文摘This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane. Traffic chaos is a promising field, and chaos theory has been applied to identify and predict its chaotic movement. A simulated traffic flow is generated using a car-following model( GM model), and the distance between two cars is investigated for its dynamic properties. A positive Lyapunov exponent confirms the existence of chaotic behavior in the GM model. A new algorithm using a RBF NN (radial basis function neural network) is proposed to predict this traffic chaos. The experiment shows that the chaotic degree and predictable degree are determined by the first Lyapunov exponent. The algorithm proposed in this paper can be generalized to recognize and predict the chaos of short-time traffic flow series