An operationally simple protocol was designed for the enantioselective silane reduction (ESR) of ketones using air- and moisture-stable [Ir(OMe)(cod)]<sub>2</sub> (cod = 1,5-cyclooctadiene) (3) as a metal ...An operationally simple protocol was designed for the enantioselective silane reduction (ESR) of ketones using air- and moisture-stable [Ir(OMe)(cod)]<sub>2</sub> (cod = 1,5-cyclooctadiene) (3) as a metal catalyst precursor. This reaction was driven by chiral hydroxyamide-functionalized azolium salt 2. The catalytic ESR reaction could be performed under benchtop conditions at room temperature. Treatment of 2 with 3 in THF yielded the monodentate IrCl(NHC)(cod) (NHC = N-heterocyclic carbene) complex 4 in 93% yield, herein the anionic methoxy ligand of 3 serves as an internal base that deprotonates the azolium ring of 2. The well-defined Ir complex 4 catalyzed the ESR reaction of propiophenone (6) with (EtO)<sub>2</sub>MeSiH using the pre-mixing reaction procedure. Based on this success, the catalytic ESR reaction was designed and implemented using an in situ-generated NHC/Ir catalyst derived from 2 and 3. Thus, a wide variety of aryl ketones could be reduced to the corresponding optically active alcohols in moderate to excellent stereoselectivities at room temperature without temperature control. Since the high catalytic activity of 3 was observed, we next evaluated several other transition metal catalyst precursors for the catalytic ESR reaction under the influence of 2. This evaluation revealed that Ir(acac)(cod) (acac = acetylacetonate) (28) and [IrCl(cod)]<sub>2</sub> (5) can be successfully used as metal catalyst precursors in the ESR reaction.展开更多
A straightforward and efficient protocol for dearomatizing indoles is described.The reaction,catalyzed by an inexpensive Co(III)/Zn(II)catalyst,starts from easily accessible N‐pyrimidinyl indoles and ene‐yne ketones...A straightforward and efficient protocol for dearomatizing indoles is described.The reaction,catalyzed by an inexpensive Co(III)/Zn(II)catalyst,starts from easily accessible N‐pyrimidinyl indoles and ene‐yne ketones.Mild reaction conditions,high diastereoselectivity,a broad substrate scope,effective functional group tolerance,and reasonable to remarkable yields were observed.展开更多
Dihydro-1-benzoyl-1,5-benzodiazepines react with (ethoxycarbonyl)carbenes to give 4H-azirino-[1,2-a][1,5]-benzodiazepines and unexpected new tin9 system 1H-pyrrolo-[1,2-a][1,5]-benzodiazepines. Dihydro-1,5-benzothiaze...Dihydro-1-benzoyl-1,5-benzodiazepines react with (ethoxycarbonyl)carbenes to give 4H-azirino-[1,2-a][1,5]-benzodiazepines and unexpected new tin9 system 1H-pyrrolo-[1,2-a][1,5]-benzodiazepines. Dihydro-1,5-benzothiazepines react with (ethoxycarbonyl)carbenes in cyclohexane to gire unexpected rin9 cleavage products ethyl (2E, 4E)-3-aryl-2-arylthiohexadienoates.展开更多
文摘An operationally simple protocol was designed for the enantioselective silane reduction (ESR) of ketones using air- and moisture-stable [Ir(OMe)(cod)]<sub>2</sub> (cod = 1,5-cyclooctadiene) (3) as a metal catalyst precursor. This reaction was driven by chiral hydroxyamide-functionalized azolium salt 2. The catalytic ESR reaction could be performed under benchtop conditions at room temperature. Treatment of 2 with 3 in THF yielded the monodentate IrCl(NHC)(cod) (NHC = N-heterocyclic carbene) complex 4 in 93% yield, herein the anionic methoxy ligand of 3 serves as an internal base that deprotonates the azolium ring of 2. The well-defined Ir complex 4 catalyzed the ESR reaction of propiophenone (6) with (EtO)<sub>2</sub>MeSiH using the pre-mixing reaction procedure. Based on this success, the catalytic ESR reaction was designed and implemented using an in situ-generated NHC/Ir catalyst derived from 2 and 3. Thus, a wide variety of aryl ketones could be reduced to the corresponding optically active alcohols in moderate to excellent stereoselectivities at room temperature without temperature control. Since the high catalytic activity of 3 was observed, we next evaluated several other transition metal catalyst precursors for the catalytic ESR reaction under the influence of 2. This evaluation revealed that Ir(acac)(cod) (acac = acetylacetonate) (28) and [IrCl(cod)]<sub>2</sub> (5) can be successfully used as metal catalyst precursors in the ESR reaction.
文摘A straightforward and efficient protocol for dearomatizing indoles is described.The reaction,catalyzed by an inexpensive Co(III)/Zn(II)catalyst,starts from easily accessible N‐pyrimidinyl indoles and ene‐yne ketones.Mild reaction conditions,high diastereoselectivity,a broad substrate scope,effective functional group tolerance,and reasonable to remarkable yields were observed.
文摘Dihydro-1-benzoyl-1,5-benzodiazepines react with (ethoxycarbonyl)carbenes to give 4H-azirino-[1,2-a][1,5]-benzodiazepines and unexpected new tin9 system 1H-pyrrolo-[1,2-a][1,5]-benzodiazepines. Dihydro-1,5-benzothiazepines react with (ethoxycarbonyl)carbenes in cyclohexane to gire unexpected rin9 cleavage products ethyl (2E, 4E)-3-aryl-2-arylthiohexadienoates.