期刊文献+
共找到694篇文章
< 1 2 35 >
每页显示 20 50 100
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer 被引量:1
1
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene Epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Graphene-calcium carbonate coating to improve the degradation resistance and mechanical integrity of a biodegradable implant
2
作者 Lokesh Choudhary Parama Chakraborty Banerjee +5 位作者 R.K.Singh Raman Derrek E.Lobo Christopher D.Easton Mainak Majumder Frank Witte Jörg F.Löffler 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期394-404,共11页
Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve ... Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve the corrosion resistance of these implants without compromising their mechanical integrity.In this study,an AZ91 magnesium alloy,as a representative for a biodegradable Mg implant material,was modified with a thin reduced graphene oxide(RGO)-calcium carbonate(CaCO_(3))composite coating.Detailed analytical and in-vitro electrochemical characterization reveals that this coating significantly improves the corrosion resistance and mechanical integrity,and thus has the potential to greatly extend the related application field. 展开更多
关键词 graphene coating Biodegradable implant HYDROXYAPATITE Corrosion Magnesium alloy
下载PDF
The role of graphene coating on cordierite-supported Pd monolithic catalysts for low-temperature combustion of toluene 被引量:10
3
作者 Wen Li Hongqi Ye +3 位作者 Gonggang Liu Hongchao Ji Yonghua Zhou Kai Han 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第5期946-954,共9页
In the present work,a Pd/graphene/cordierite(Pd/Gr/Cor)composite was prepared as a monolithic catalyst for low-temperature combustion of toluene.We mainly focused on understanding the role of graphene coating through ... In the present work,a Pd/graphene/cordierite(Pd/Gr/Cor)composite was prepared as a monolithic catalyst for low-temperature combustion of toluene.We mainly focused on understanding the role of graphene coating through investigation of catalytic performance and adsorption behavior of the composite.Compared with the traditional Pd/Cor catalyst without graphene coating,Pd/Gr/Cor catalyst delivered much higher activity and stability for toluene catalytic combustion in both dry and moist conditions.Transmission electron microscopy(TEM)and hydrophobic characterizations indicated that graphene coating can considerably improve the dispersity of Pd nanoparticles and enhance the hydrophobicity of the cordierite support.The adsorption behavior of the above two catalysts,including adsorption isothermal,adsorption kinetics,and adsorption thermodynamics were carefully investigated.The simulation results indicated that a large amount of toluene was adsorbed on graphene surface through relatively weak interaction,whereas only a relatively small amount of toluene was adsorbed on Pd surface with strong affinity.The adsorption thermal calculation indicated that the adsorption of toluene on graphene was a process with reduced entropy,indicating highly-ordered assembly of toluene molecular on graphene.It is the significant concentration and affinity gap between graphene and Pd that ensures a simultaneously and rapid transfer of toluene during the reaction process. 展开更多
关键词 graphene coating PALLADIUM Catalytic combustion STEAM Adsorption
下载PDF
Scalable and fast fabrication of graphene integrated micro-supercapacitors with remarkable volumetric capacitance and flexibility through continuous centrifugal coating 被引量:3
4
作者 Xiaoyu Shi Lijun Tian +9 位作者 Sen Wang Pengchao Wen Ming Su Han Xiao Pratteek Das Feng Zhou Zhaoping Liu Chenglin Sun Zhong-Shuai Wu Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期284-290,I0009,共8页
Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration a... Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration are highly necessary for the smart power sources-unitized electronics.Despite the great progress,the fabrication of MSCs combining high integration with high volumetric performance remains largely unsolved.Herein,we develop a simple,fast and scalable strategy to fabricate graphene based highly integrated MSCs by a new effective continuous centrifugal coating technique.Notably,the resulting highly conductive graphene films can act as not only patterned microelectrodes but also metal-free current collectors and interconnects,endowing modular MSCs with high integrity,remarkable flexibility,tailored voltage and capacitance output,and outstanding performance uniformity.More importantly,the strong centrifugal force and shear force generated in continuous centrifugal coating process lead to graphene films with high alignment,compactness and packing density,contributing to excellent volumetric capacitance of ~31.8 F cm^(-3) and volumetric energy density of ~2.8 mWh cm^(-3),exceeding most reported integrated MSCs.Therefore,our work paves a novel way for simple and scalable fabrication of integrated MSCs and offers promising opportunities as standalone microscale power sources for new-generation electronics. 展开更多
关键词 Integrated micro-supercapacitors Continuous centrifugal coating graphene FLEXIBILITY Volumetric capacitance
下载PDF
One-step electrodeposition to fabricate robust superhydrophobic silver/graphene coatings with excellent stability 被引量:2
5
作者 De-xin CHEN Ye-qing HE +2 位作者 Qi-wei WANG Wei LI Zhi-xin KANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第10期3321-3333,共13页
A facile method was proposed to prepare stretchable silver-based composite coatings with excellent conductivity and stability for flexible electronics.Silver coating was firstly deposited on thermoplastic polyurethane... A facile method was proposed to prepare stretchable silver-based composite coatings with excellent conductivity and stability for flexible electronics.Silver coating was firstly deposited on thermoplastic polyurethane(TPU)elastomer rubber surface via two-component spraying technique,then the superhydrophobic surface was obtained by one-step electrodeposition of cerium compounds(CeM)and graphene nanosheets(GNS)to produce Ag/CeM/GNS composite coatings.The obtained Ag/CeM/GNS composite coatings maintained high conductivity after experiencing bending cycles and stretching cycles.Furthermore,the as-prepared Ag/CeM/GNS composite coatings showed excellent self-cleaning and anti-fouling properties,and the corrosion resistance has improved significantly compared to the original Ag coating.In addition,the Ag/CeM/GNS composite coatings could drive the circuit normally in the states of tensile,bending and twisting deformation,showing excellent mechanical stability and applicability.As a result,it is believed that the prepared Ag/CeM/GNS composite coatings with excellent conductivity and stability have promising applications for flexible electronics in harsh conditions. 展开更多
关键词 silver/graphene coating SUPERHYDROPHOBICITY one-step electrodeposition STABILITY
下载PDF
Curing Kinetics, Mechanical Properties and Thermal Stability of Epoxy/Graphene Nanoplatelets(GNPs) Powder Coatings 被引量:4
6
作者 智茂永 黄婉霞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期1155-1161,共7页
Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored b... Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored by means of real-time Fourier transform infrared spectroscopy(FT-IR) with a heating cell. The mechanical properties of the epoxy/GNPs cured coatings had been investigated, by evaluating their fracture surfaces with field-emission scanning electron microscopy(FE-SEM) after three-point-bending tests. The thermal stability of the epoxy/GNPs cured coatings was studied by thermo-gravimetric analysis(TGA). The isothermal curing kinetics result showed that the GNPs would not affect the autocatalytic reaction mechanism, but the loading of GNPs below 1.0 wt % additive played a prompting role in the curing of the epoxy/GNPs powder coatings. The fracture strain, fracture toughness and impact resistance of the epoxy/GNPs cured coatings increased dramatically at low levels of GNPs loading(1 wt %), indicating that the GNPs could improve the toughness of the epoxy/GNPs powder coatings. Furthermore, from FE-SEM studies of the fracture surfaces, the possible toughening mechanisms of the epoxy/GNPs cured coatings were proposed. TGA result showed that the incorporation of GNPs improved the thermal stability of the cured coatings. Hence, the GNPs modified epoxy can be an efficient approach to toughen epoxy powder coating along with improving their thermal stability. 展开更多
关键词 epoxy powder coating graphene nanoplatelets(GNPs) toughening mechanism thermal stability
下载PDF
Influence of graphene on the anti-corrosion performance of epoxy-based coatings 被引量:1
7
作者 DONG Ying LU Qiting YAO Qisheng 《Baosteel Technical Research》 CAS 2016年第3期15-20,共6页
In this work, graphene-modified epoxy-based anti-corrosion coatings were prepared and the influence of graphene on the anti-corrosion performance of the epoxy-based coatings was investigated with water contact angle t... In this work, graphene-modified epoxy-based anti-corrosion coatings were prepared and the influence of graphene on the anti-corrosion performance of the epoxy-based coatings was investigated with water contact angle test ,chemical solution immersion test, and electrochemical test. The water contact angle and chemical solution resistance of the epoxy-based coatings were improved with an increase in graphene content from 0 to 0.4%. These results prove that addition of graphene can significantly improve the hydrophobicity and impermeability of epoxy- based coatings. However, when the graphene content was increased to 0.5%, the performance of the epoxy-based coatings decreased because of graphene aggregation. Tafel polarization results show that graphene addition can significantly reduce the corrosion current density and corrosion potential of epoxy-based coatings, which enhance their anti-corrosion performance. 展开更多
关键词 graphene epoxy-based coating anti-corrosion performance Tafel polarization curve
下载PDF
Effect of Dip Coating Process on the Performance of Graphene/Spandex Yarn Strain Sensor
8
作者 DONG Xiaolong WANG Tingting +3 位作者 HU Jiyong DONG Hongqiang LU Yun YANG Xudong 《Journal of Donghua University(English Edition)》 EI CAS 2019年第5期451-457,共7页
This study presented the effect of the concentration of graphene in the dispersion,the type of polyvinyl alcohol(PVA)and the surfactant on the sensing properties of dip-coated graphene/spandex yarns as resistance stra... This study presented the effect of the concentration of graphene in the dispersion,the type of polyvinyl alcohol(PVA)and the surfactant on the sensing properties of dip-coated graphene/spandex yarns as resistance strain sensors.Experimental results showed that the addition of styrene-acrylic emulsion surfactant facilitates the dispersion of graphene and then improves the conductivity and sensing performance,and the sensitivity is up to 91.The conductivity and sensing properties of graphene/spandex yarns at 2%graphene dispersion are better than those at 1%graphene dispersion.When the conductive yarn treated by 2%graphene dispersion is stretched to 50%,the sensitivity is up to 29,the repeatability is good,and the hysteresis is low.In terms of the binding agent,PVA as a high alcoholysis and large polymerization decreases the sensitivity,repeatability as well as the hysteresis. 展开更多
关键词 graphene DIP coating electrical CONDUCTIVITY sensing PERFORMANCE
下载PDF
Anticorrosive Coatings Based on Few-Layer Graphene
9
作者 Malika Tulegenova Arkady Ilyin +1 位作者 Gary Beall Nazim Guseinov1 《材料科学与工程(中英文B版)》 2018年第4期137-142,共6页
In this paper the anticorrosive properties of the few-layer graphene nanostructures were investigated. On the surface ofcopper and nickel plates the few-layer graphene nanostructures were formed using the CVD (chemic... In this paper the anticorrosive properties of the few-layer graphene nanostructures were investigated. On the surface ofcopper and nickel plates the few-layer graphene nanostructures were formed using the CVD (chemical vapor deposition) method.After that, these plates were exposed to the temperature in the air atmosphere. The results of elemental analysis, performed by theEDS (energy dispersive spectroscopy) method showed that the few-layer graphene coated metal plates proved to be more resistant tooxidation than bare metal plates. In addition, we presented computer models and theoretical calculations of the studied systems,performed by the DFT (density functional theory) and MD (molecular dynamics) methods. These results combined with experimentaldata show the high effectiveness of the protective action of the few-layer graphene against metal corrosion. 展开更多
关键词 graphene ANTICORROSIVE coating CVD method COMPUTER simulation.
下载PDF
Cr颗粒对Ni-Graphene复合沉积层组织结构及性能的优化
10
作者 孟良 胡勤友 +1 位作者 施朝健 黄常海 《表面技术》 EI CAS CSCD 北大核心 2020年第5期259-268,278,共11页
目的电沉积技术制备Ni-Cr-Graphene复合沉积层,调查不同Cr颗粒浓度对复合沉积层组织结构及性能的优化影响。方法利用电沉积技术在镍铝青铜(NAB)表面制备出Ni-Cr-Graphene复合沉积层。采用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)... 目的电沉积技术制备Ni-Cr-Graphene复合沉积层,调查不同Cr颗粒浓度对复合沉积层组织结构及性能的优化影响。方法利用电沉积技术在镍铝青铜(NAB)表面制备出Ni-Cr-Graphene复合沉积层。采用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)与拉曼光谱仪(Raman),对复合沉积层的形貌、成分与组织结构(晶粒大小、结晶形状及结晶织构)进行表征,并采用显微硬度计与电化学工作站分别对沉积层的硬度及耐腐蚀性能进行调查。结果Graphene颗粒使得纯Ni沉积层中的Ni晶粒尺寸由175.3 nm减小到Ni-0Cr-4Graphene沉积层中的Ni晶粒尺寸60.5nm。随着Cr颗粒质量浓度进一步从0g/L增加到100 g/L,Ni-Cr-Graphene复合沉积层中的Cr质量分数从0%增加到23.8%,且Ni晶粒尺寸进一步减小到Ni-100Cr-4Graphene沉积层的29.1nm,Ni[200]结晶织构被消除。Graphene与Cr颗粒显著提高了Ni-CrGraphene复合沉积层的表面硬度,所有复合沉积层的显微硬度均高于纯Ni沉积层(260.1HV0.2),且在100 g/L Cr颗粒浓度下,沉积层平均显微硬度为489.8HV0.2。同时Graphene与Cr颗粒改善了Ni-Cr-Graphene复合沉积层在3.5%NaCl溶液中的耐腐蚀性能,在100 g/L Cr颗粒浓度下,复合沉积层的自腐蚀电位(Ecorr)为-0.21 V,自腐蚀电流密度(Jcorr)为0.25μA/cm^2,其相对纯Ni沉积层Jcorr(7.01μA/cm^2)降低了1个数量级。结论溶液中Cr颗粒浓度的增加引起了Ni-Cr-Graphene复合沉积层中Cr含量的增加,使得更多Cr颗粒与Graphene颗粒共同作为Ni金属结晶形核点,促进了Ni的晶粒细化与织构转变,最终提高了复合沉积层的硬度与耐腐蚀性能。 展开更多
关键词 电沉积 石墨烯 镍基复合沉积层 组织结构 腐蚀性能
下载PDF
Core@shell sulfur@polypyrrole nanoparticles sandwiched in graphene sheets as cathode for lithium–sulfur batteries 被引量:3
11
作者 Xiangyang Zhou Feng Chen Juan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期448-455,共8页
A nano sulfur-based composite cathode material featured by uniform core@shell-structured sulfur@polypyrrole nanoparticles sandwiched in three-dimensional graphene sheets conductive network(S@PPy/GS) is fabricated vi... A nano sulfur-based composite cathode material featured by uniform core@shell-structured sulfur@polypyrrole nanoparticles sandwiched in three-dimensional graphene sheets conductive network(S@PPy/GS) is fabricated via a facile solution-based method. The S@PPy nanoparticles are synthesized by in situ chemical oxidative polymerization of pyrrole on the surface of sulfur particles,and then graphene sheets are covered outside the S@PPy nanoparticles,forming a three-dimensional conductive network. When evaluating the electrochemical performance of S@PPy/GS in a lithium–sulfur battery,it delivers large discharge capacity,excellent cycle stability,and good rate capability. The initial discharge capacity is up to 1040 m Ah/g at 0.1 C,the capacity can remain 537.8 m Ah/g at 0.2 C after 200 cycles,even at a higher rate of 1 C,the specific capacity still reaches 566.5 m Ah/g. The good electrochemical performance is attributed to the unique structure of S@PPy/GS,which can not only provide an excellent transport of lithium and electron ions within the electrodes,but also retard the shuttle effect of soluble lithium polysulfides effectively,thus plays a positive role in building better lithium-sulfur batteries. 展开更多
关键词 Nano sulfur Conductive polymer Core@shell structure graphene coating Lithium–sulfur battery
下载PDF
Laser-Etched Stretchable Graphene-Polymer Composite Array for Sensitive Strain and Viscosity Sensors 被引量:4
12
作者 Yuting Jiang Yang Wang +4 位作者 Heting Wu Yuanhao Wang Renyun Zhang H?kan Olin Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期709-719,共11页
The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications.Soft materials have prominent advantages for producing the smart coatings with multiple fu... The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications.Soft materials have prominent advantages for producing the smart coatings with multiple functions for strain sensing.Here,we report a simple method to prepare flexible hydrophobic smart coatings using graphene-polymer films.Arrays of individual patterns in the films were created by laser engraving and controlled the contact angle of small drops by pinning the contact lines in a horizontal tensile range of 0-200%.By means of experiments and model,we demonstrate that the ductility of drops is relied on the height-to-spacing ratio of the individual pattern and the intrinsic contact angle.Moreover,the change of drop size was utilized to measure the applied strain and liquid viscosity,enabling a strain sensitivity as high as 1068μm2/%.The proposed laser-etched stretchable graphene-polymer composite has potential applications in DNA microarrays,biological assays,soft robots,and so on. 展开更多
关键词 HYDROPHOBIC smart coatings Flexible sensors Soft materials Controlled DROPS graphene
下载PDF
Effect of graphene addition on the physicomechanical and tribological properties of Cu nanocomposites 被引量:1
13
作者 Adnan I.Khdair A.Ibrahim 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期161-167,共7页
This paper presents an experimental investigation of the mechanical and tribological properties of Cu-graphene nanosheets(GN)nanocomposites.We employed the electroless coating process to coat GNs with Ag particles to ... This paper presents an experimental investigation of the mechanical and tribological properties of Cu-graphene nanosheets(GN)nanocomposites.We employed the electroless coating process to coat GNs with Ag particles to avoid its reaction with Cu and the formation of intermetallic phases.We analyzed the effect of GN content on the structural,mechanical,and tribological properties of the produced nanocom-posites.Results showed that the electroless coating process is an efficient technique to avoid the reaction between Cu and C and the formation of intermetallic phases.The addition of GNs significantly improves the mechanical and tribological properties of Cu nanocomposites.However,the addition of GNs needs to be done carefully because,after a certain threshold value,the mechanical and tribological properties are negatively affected.The optimum GN content is determined to be 0.5vol%,at which hardness,wear rate,and coefficient of friction are im-proved by 13%,81.9%,and 49.8%,respectively,compared with Cu nanocomposites.These improved properties are due to the reduced crys-tallite size,presence of GNs,and homogenous distribution of the composite constituents. 展开更多
关键词 copper graphene nanosheets coating mechanical properties WEAR
下载PDF
Graphene quantum dots assisted photovoltage and efficiency enhancement in CdSe quantum dot sensitized solar cells 被引量:1
14
作者 Yuanyuan Zhong Hua Zhang +2 位作者 Dengyu Pan Liang Wang Xinhua Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期722-728,共7页
CdSe quantum dot sensitized solar cells (QDSCs) modified with graphene quantum dots (GQDs) have been successfully achieved in this work for the first time. Satisfactorily, the optimized photovoltage (Voc) of the... CdSe quantum dot sensitized solar cells (QDSCs) modified with graphene quantum dots (GQDs) have been successfully achieved in this work for the first time. Satisfactorily, the optimized photovoltage (Voc) of the modified QDSCs was approximately 0.04 V higher than that of plain CdSe QDSCs, consequently improving the photovoltaic performance of the resulting QDSCs. Served as a novel coating on the CdSe QD sensitized photoanode, GQDs played a vital role in improving Voc due to the suppressed charge recombination which has been confirmed by electron impedance spectroscopy as well as transient photovoltage decay measure- ments. Moreover, different adsorption sequences, concentration and deposition time of GQDs have also been systematically investigated to boost the power conversion efficiency (PCE) of CdSe QDSCs. After the coating of CdSe with GQDs, the resulting champion CdSe QDSCs exhibited an improved PCE of 6.59% under AM 1.5G full one sun illumination. 展开更多
关键词 graphene quantum dot CdSe O DSCs coating Open-circuit voltage Power conversion efficiency
下载PDF
Graphene/Ag NW复合体系的光学特性研究
15
作者 蔺吉楠 万沈池 +2 位作者 姜东辉 曲佳 孙文军 《哈尔滨师范大学自然科学学报》 CAS 2017年第4期31-34,共4页
利用FDTD软件建立了Graphene/Ag NW复合模型并计算了不同直径银纳米线对Graphene/Ag NW复合模型光透射谱的影响,理论计算表明随着石墨烯层数的增加和Ag NW直径的增加会导致Gr/Ag NW复合模型在紫外可见波段透射率略有下降,同时会出现Ag N... 利用FDTD软件建立了Graphene/Ag NW复合模型并计算了不同直径银纳米线对Graphene/Ag NW复合模型光透射谱的影响,理论计算表明随着石墨烯层数的增加和Ag NW直径的增加会导致Gr/Ag NW复合模型在紫外可见波段透射率略有下降,同时会出现Ag NW的共振吸收峰,进一步降低紫外波段的光透射率.利用旋涂法制备了Gr/Ag NW复合薄膜,测试结果表明,制备的Gr/Ag NW复合薄膜均匀性较高,但偶尔也会出现石墨烯的堆叠现象,且Gr/Ag NW复合薄膜的紫外可见波段透射谱与理论计算结果基本吻合,从而验证了理论模型的可行性. 展开更多
关键词 旋涂法 graphene/Ag NW复合薄膜 透射率 FDTD
下载PDF
Facile Fabrication of Conductive Paper-based Materials from Tunicate Cellulose Nanocrystals and Polydopamine-decorated Graphene Oxide 被引量:3
16
作者 XiaoZhou Ma YaoYao Chen +1 位作者 Peter R. Chang Jin Huang 《Paper And Biomaterials》 2018年第4期19-25,共7页
Conductive papers made from graphene and its derivatives are important for the development of electronic devices; however, elastomer-based matrices usually make it difficult for the conductive sheets to form... Conductive papers made from graphene and its derivatives are important for the development of electronic devices; however, elastomer-based matrices usually make it difficult for the conductive sheets to form continuous conductive networks. In this work, we used tunicate-derived cellulose nanocrystals (TCNC) instead of traditional elastomers as the matrix for polydopamine (PDA)-coated and reduced graphene oxide (GO) to prepare conductive paper, which, at a low concentration, were better for the formation of conductive networks from conductive sheets. It was found that the Young’s modulus of the conductive paper produced via this strategy reached as high as 7 GPa. Meanwhile, owing to the partial reduction of GO during the polymerization of dopamine, the conductivity of the conductive paper reached as high as 1.3×10-5 S/cm when the PDA-coated GO content was 1 wt%, which was much higher than the conductivity of pure GO (-4.60×10-8 S/cm). This work provides a new strategy for preparing environmentally friendly conductive papers with good mechanical properties and low conductive fller content, which may be used to produce high-performance, low-cost electronic devices. 展开更多
关键词 conductive paper tunicate cellulose nanocrystal graphene oxide polydopamine coating casting paper
下载PDF
Biomimetic Mineralizated and Nano-Ag Loadedgraphene Oxide/Chitosan Hybrid Scaffold for Osteoinduction and Antibacterium
17
作者 XIE Chaoming LU Xiong JIANG Lili 《矿物学报》 CAS CSCD 北大核心 2013年第S1期114-114,共1页
Graphene oxide (GO) is a graphene derivatives that has oxygen-containing functional groups on the graphene basal plane, such as hydroxyl, carbonyl, epoxy and carboxyl groups. GO is considered as a promising material f... Graphene oxide (GO) is a graphene derivatives that has oxygen-containing functional groups on the graphene basal plane, such as hydroxyl, carbonyl, epoxy and carboxyl groups. GO is considered as a promising material for biological applications owing to its excellent surface functionalizability, high specific suface area and good biocompatibility. In this study, GO/chitosan hybrid scaffolds were prepared for tissue engineering. Nano silver was loaded into the scaffold to improve its antibacterial ability and biomimetic Ca-P coatings were deposited on the scaffold surface to enhance its osteoconductivity. First, GO was prepared by the chemical oxidization of graphite. Secondly, nano-Ag loaded GO was prepared by chemical reducing Ag ions in GO solutions. Then, nano-Ag loaded GO solution was mixed with CS solution to form GO-CS gel. Chitosan (CS) and GO were crosslinked by electrostatic interactions between oxygen-containing functional groups of GO and NH2 groups of CS. The gel were freeze dried to produce nano-Ag loaded GO/CS hybrid porous scaffolds. Finally, the as-prepared scaffolds were immersed the into a supersaturated calcium phosphate solution (SCPS) for 7 days to deposite CaP coatings on the surface of the micropores. SEM images showed that nano-Ag uniformly distributed in the scaffold and the CaP covered most of the scaffold surfaces. In vitro cell culture and antimicrobial test indicated the biomimetic mineralized Ag-CS-GO scaffolds have good osteoconductivity and bactericidal ability. 展开更多
关键词 graphene oxide CHITOSAN SCAFFOLD BIOMIMETIC CaP coatings nano-Ag
下载PDF
A“bricks-and-mortar”structured graphene oxide/polyvinyl alcohol coating:Enhanced water interfacial lubrication and durability
18
作者 Hanglin LI Lin DING +5 位作者 Jingchun ZHANG Zhaoyang GUO Yazhuo SHANG Honglai LIU Xiangqiong ZENG Jiusheng LI 《Friction》 SCIE EI CAS CSCD 2024年第12期2657-2678,共22页
Coatings serve as ideal protective films for mechanical systems,providing dependable as well as efficient lubrication because of their unique structure along with outstanding tribological characteristics.Inspired by ... Coatings serve as ideal protective films for mechanical systems,providing dependable as well as efficient lubrication because of their unique structure along with outstanding tribological characteristics.Inspired by the“bricks-and-mortar”structure,we prepared layered graphene oxide(GO)composite finishes strengthened with polyvinyl alcohol(PVA)and borax.Our study demonstrates that the tribological properties of the GO-based coating on 304 stainless steel(SS304)are potentially greatly affected through PVA,GO,and annealing.By optimizing the composition,we achieved the PVA_(40 wt%)/GO_(0.01 wt%)/borax composite coating,which exhibited the lowest average coefficient of friction(COF)of 0.021±0.003(a 97.86%reduction compared to control SS304)with minimal wear and abrasion even in a water environment.We found that the enhanced mechanical characteristics as well as elastic recovery within the coating were attributed to the hydrogen bonds and cross-linking between PVA and borax,which led to stress distribution.Reduced friction was further aided by the formation of a hydrated layer at the friction interface.As a result,the coating demonstrated remarkable durability,maintaining a low COF during long sliding distances(576 m,28,800 cycles,significantly longer than previously reported)without breaking. 展开更多
关键词 graphene oxide coating water lubrication anti-wear properties DURABILITY
原文传递
羟基磷灰石-氧化石墨烯复合涂层促进大鼠骨缺损的修复
19
作者 都曼别克·阿曼台 何惠宇 韩祥祯 《中国组织工程研究》 CAS 北大核心 2025年第10期2030-2037,共8页
背景:钛及钛涂层材料在口腔种植领域广泛运用,但仍存在着种植体周围炎、种植体脱落及松动等现象,因此对纯钛的表面改性成为了口腔医学研究的热点问题。目的:探究钛表面羟基磷灰石-氧化石墨烯复合涂层的物理性能及促成骨性能。方法:在电... 背景:钛及钛涂层材料在口腔种植领域广泛运用,但仍存在着种植体周围炎、种植体脱落及松动等现象,因此对纯钛的表面改性成为了口腔医学研究的热点问题。目的:探究钛表面羟基磷灰石-氧化石墨烯复合涂层的物理性能及促成骨性能。方法:在电压为10,30,50 V条件下,采用电化学沉积法在钛表面分别制备羟基磷灰石-氧化石墨烯复合涂层,表征涂层的微观形貌、亲水性能,筛选最佳电压条件下制备的复合涂层,用于动物实验。取54只SD大鼠,在双侧后肢股骨头制备直径2 mm、深度7 mm的缺损,随机分3组干预,每组18只:空白组不植入钛材料,纯钛组植入纯钛材料,涂层组植入负载羟基磷灰石-氧化石墨烯复合涂层钛材料,植入后第4,8,12周取材,通过X射线片、Micro-CT扫描、病理切片染色观察成骨效果。结果与结论:(1)扫描电镜下可见,当电压为10 V时,涂层中出现了大量的裂纹和块状物;当电压升至30 V时,涂层仍然存在一些小的块状物,但整体上表现出较为平坦的均匀性;当电压为50 V时,涂层的分布更加均匀,裂纹和斑点也减少。在50 V电压下制备的复合涂层亲水性能最佳。综合以上,动物实验选择在50 V电压下制备的复合涂层材料。(2)X射线片显示种植体植入位置相对固定,未产生严重的术后炎症反应。Micro-CT扫描结果显示,涂层组种植体表面新骨形成速度与成骨量均优于纯钛组(P <0.001)。病理切片苏木精-伊红染色、Masson染色进一步证实了Micro-CT扫描结果。病理切片免疫组化染色显示,纯钛组植入第12周的骨桥蛋白、骨形态发生蛋白2表达高于空白组(P <0.001),涂层组植入第12周的骨桥蛋白、骨形态发生蛋白2表达高于纯钛组(P <0.001)。(3)结果显示,羟基磷灰石-氧化石墨烯复合涂层材料具有良好的物理性能与促成骨性能。 展开更多
关键词 氧化石墨烯 羟基磷灰石 电化学沉积 复合涂层 成骨 种植体
下载PDF
氧化石墨烯/羟基磷灰石复合涂层对RAW264.7巨噬细胞免疫活性的影响
20
作者 马丽莎 何惠宇 +2 位作者 吾凡别克·巴合提 吕尚毅 韩祥祯 《中国组织工程研究》 CAS 北大核心 2025年第10期2023-2029,共7页
背景:纯钛种植体植入机体后存在骨融合失败或者种植体周围感染等问题,因此对钛种植体表面进行改良已成研究的热门话题。巨噬细胞是机体应对外界刺激的一道免疫防线,任何生物材料植入体内后的相关免疫反应均与巨噬细胞相关。目的:采用电... 背景:纯钛种植体植入机体后存在骨融合失败或者种植体周围感染等问题,因此对钛种植体表面进行改良已成研究的热门话题。巨噬细胞是机体应对外界刺激的一道免疫防线,任何生物材料植入体内后的相关免疫反应均与巨噬细胞相关。目的:采用电化学沉积法在纯钛片表面制备氧化石墨烯/羟基磷灰石复合涂层,分析涂层的表面特征及对RAW264.7巨噬细胞生长、极化的影响。方法:采用电化学沉积法在纯钛片表面分别制备单纯氧化石墨烯涂层、氧化石墨烯/羟基磷灰石复合涂层,表征涂层的物理性能。将纯钛片(空白组)、沉积单纯氧化石墨烯涂层的钛片(对照组)、沉积氧化石墨烯/羟基磷灰石复合涂层的钛片(实验组)分别与RAW264.7巨噬细胞共培养,采用CCK-8法、DAPI染色检测细胞增殖,扫描电镜观察细胞在钛片表面的黏附,流式细胞仪检测细胞极化表型。结果与结论:(1)扫描电镜下可见纯钛片有定向划痕与少量点状凹陷;沉积单纯氧化石墨烯涂层后,钛片表面可见较多裂纹沟壑和大小不均匀的颗粒状物,以及氧化石墨烯特征的褶皱样结构;沉积复合涂层后,钛片表面较光滑,可见团状颗粒,颗粒大小较为均匀。沉积复合涂层钛片的水接触接角小于纯钛片、沉积单纯氧化石墨烯涂层的钛片(P <0.05)。(2)CCK-8检测与DAPI染色显示,相较于空白组、对照组,实验组细胞增殖更快。扫描电镜下可见RAW264.7细胞均黏附于3组钛片表面,随着培养时间的延长细胞形态发生改变,由圆形向梭形转变,至培养7 d时,空白组细胞伸出的伪足短而少,对照组细胞伸出长而多的伪足,实验组细胞伸出短而多的伪足,并且实验组细胞整体饱满度最优。流式细胞仪检测显示,实验组细胞更高比例向抗炎方向M2型极化。(3)结果表明,氧化石墨烯/羟基磷灰石复合涂层具有良好的理化性能及生物学性能。 展开更多
关键词 氧化石墨烯 羟基磷灰石 复合涂层 巨噬细胞 钛合金 电沉积化
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部