Over the past twenty years, significant advances have been made in the field of microalloying and associated applications, among which one of the most successful application cases is HTP practice for heavy gauge, high...Over the past twenty years, significant advances have been made in the field of microalloying and associated applications, among which one of the most successful application cases is HTP practice for heavy gauge, high strength pipeline steels. Combined the strengthening effects of TMCP and retardation effects of austenite recrystallization with increasing Nb in austenite region, HTP conception with low carbon and high niobium alloy design has been successfully applied to develop X80 coil with a thickness of 18.4 mm used for China's Second West-East pipeline. During this process, big efforts were made to further develop and enrich the application of microalloying technology, and at the same time the strengthening effects of Nb have been completely unfolded and fully utilized with improved metallurgical quality and quantitative analysis of microstructure. In this paper, the existing status and strengthening effect of Nb during reheating, rolling and cooling have been analyzed and characterized based on mass production samples and laboratory analysis. As confirmed, grain refinement remains the most basic strengthening measure to reduce the microstructure gradient along the thickness, which in turn enlarges the processing window to improve upon low temperature toughness, and finally make it possible to develop heavy gauge, high strength pipeline steels with more challenging fracture toughness requirements. As stated by a good saying that practice makes perfect. Based on application practice and theoretical analysis, HTP has been extended to develop heavy gauge and high strength pipeline steels with increasing requirements, including X80 SSAW pipe with a thickness of 22.0 mm and above, X80 LSAW pipe combining heavy gauge and large diameter, heavy gauge X80 LSAW pipe with low temperature requirements, as well as X90 steels. In this paper, alloy design, production processing, as well as mechanical properties and microstructure used for these products would be illustrated.展开更多
Influence of microstructure of the experimental steels on the corrosion fatigue behavior in 3.5% of NaCl aqueous solution was studied.Experimental results show that compared with the full martensite(FM)steel,the car...Influence of microstructure of the experimental steels on the corrosion fatigue behavior in 3.5% of NaCl aqueous solution was studied.Experimental results show that compared with the full martensite(FM)steel,the carbide-free bainite/martensite(CFB/M)steel has higher corrosion fatigue strength and corrosion fatigue crack threshold(ΔKthcf),and lower corrosion crack propagation rate [(da/dN)cf].展开更多
The 1.1C-1.5Si-1.1Mn1.4Cr-0.5Mo-0.6Al-0.6Co (in wt%) steel was treated, respectively, by isothermal austempering process and newly developed austempering-partitioning-tempering process (A-P-T). After austempering ...The 1.1C-1.5Si-1.1Mn1.4Cr-0.5Mo-0.6Al-0.6Co (in wt%) steel was treated, respectively, by isothermal austempering process and newly developed austempering-partitioning-tempering process (A-P-T). After austempering at 250, 280 and 300 ℃ for 38, 20 and 10 h, respectively, the sample microstructures were composed of bainitic ferrite plates and film-like retained austenite with thicknesses between 60 and 150 nm. The highest tensile strength of 2003 MPa and hardness value of 53.9 HRC were obtained for the steel after austempering at 250 ℃ for 38 h, resulting from the combining effect of super-saturated martensite decarburization and stabilization of bainitic formation. After A-P-T treating (heated at 300 ℃ for 8 h following water cooling, and then heated at 300 ℃ for 2 h following air cooling), bamboo leaf-like martensite, primary and secondary bainites and retained austenite were observed. The thickness of the secondary bainitic ferrite plates formed during partitioning is much smaller than that of the primary bainite formed during 300 ℃ austempering. Samples subjected to A-P-T treatment showed improvement in ductility compared to that subjected to austempering.展开更多
Low carbon bainitic steel derives the high strength mainly from high density of dislocations rather than carbon and alloy element content, so it tends to evolve into equilibrium microstructure with low density of disl...Low carbon bainitic steel derives the high strength mainly from high density of dislocations rather than carbon and alloy element content, so it tends to evolve into equilibrium microstructure with low density of dislocations under thermal disturbance. In the present investigation, granular bainite and lath-like bainitic ferrite were produced respectively in Mo-free low-carbon steels by changing cooling rate;. It has been found that granular bainite possesses a lower strength at room temperature than bainitic ferrite, but it exhibits a slower decrease of strength with temperature increasing. Dislocation density in both granular bainite and bainitic ferrite decreases via recovery and recrystallization at high temperature. However, when reheating of bainite is carded out at temperature below 600 ℃, a long time will be needed for incubation of recrystallization, during which the hardness of bainite maintains stable. The property makes bainite, especially granular bainite, become a potential microstructure for matrix of high strength fire-resistant steel.展开更多
The growth behavior at the early stage of bainitic transformation was investigated using optical microscopy,X-ray diffraction analysis and transmission electronic microscopy.The bainite was obtained by isothermal tran...The growth behavior at the early stage of bainitic transformation was investigated using optical microscopy,X-ray diffraction analysis and transmission electronic microscopy.The bainite was obtained by isothermal transformation at 200 ℃ only for a short time in a high carbon silicon-containing steel after austenitization at 200 ℃ only for 20 min.Transmission electronic microscopy shows that the bainite appears in the form of plates with a width of about 30 nm,and that the interface of the bainite leading tip is wedge shaped.X-ray diffraction analysis reveals that the bainite plates consist of single ferrite phase,with absence of carbides.The results confirm the occurrence of the moiré which suggests the existence of austenite grain boundaries at the bainite leading tip.Both the lateral growth and longitudinal growth of bainite have weak ability to traverse the lattice-distortion strain fields and austenite grain boundary.The austenite grain boundary impedes the longitudinal growth of the bainite plate,i.e.,the growth of bainite plate stops at the austenite grain boundary.The longitudinal growth of bainite associated with the features of shear mechanism can not completely be in accordance with that of martensitic transformation.展开更多
This work investigated the evolution of multiphase microstructure and impact fracture behavior of medium carbon high silicon high strength steel subjected to the austempering treatment at 240,360,and400℃.The results ...This work investigated the evolution of multiphase microstructure and impact fracture behavior of medium carbon high silicon high strength steel subjected to the austempering treatment at 240,360,and400℃.The results show that martensite,bainite,and retained austenite(RA)are the main microstructural phases.The austempering treatments at 360 and 400℃ caused the formation of carbon-poor ferrite in the matrix,and the transformation of ultrafine bainite into coarse lath bainite and granular bainite,respectively.Thick filmy RA was distributed between bainite laths.The polygonal martensiteaustenite islands and blocky RA formed along the grain boundaries.The average carbon concentration in the matrix decreased with the temperature increase,while the impact toughness initially increased and then dropped with temperature.The quasi-cleavage brittle fracture dominated the impact fracture mechanism of the sample austempered at 240℃ by forming tearing surfaces and tearing steps.The microcracks disappeared in the RA on the prior austenite grain boundaries.On the other side,the fracture surface of the sample austempered at 360℃ exhibited ductile fracture with deep dimples and brittle fracture with cleavage river patterns.The polygonal martensite-austenite islands or blocky RA constrained the microcracks.After austempered at 400℃,the brittle fracture was dominant,showing river patterns,and the microcracks propagated through the granular bainite without any resistance.展开更多
文摘Over the past twenty years, significant advances have been made in the field of microalloying and associated applications, among which one of the most successful application cases is HTP practice for heavy gauge, high strength pipeline steels. Combined the strengthening effects of TMCP and retardation effects of austenite recrystallization with increasing Nb in austenite region, HTP conception with low carbon and high niobium alloy design has been successfully applied to develop X80 coil with a thickness of 18.4 mm used for China's Second West-East pipeline. During this process, big efforts were made to further develop and enrich the application of microalloying technology, and at the same time the strengthening effects of Nb have been completely unfolded and fully utilized with improved metallurgical quality and quantitative analysis of microstructure. In this paper, the existing status and strengthening effect of Nb during reheating, rolling and cooling have been analyzed and characterized based on mass production samples and laboratory analysis. As confirmed, grain refinement remains the most basic strengthening measure to reduce the microstructure gradient along the thickness, which in turn enlarges the processing window to improve upon low temperature toughness, and finally make it possible to develop heavy gauge, high strength pipeline steels with more challenging fracture toughness requirements. As stated by a good saying that practice makes perfect. Based on application practice and theoretical analysis, HTP has been extended to develop heavy gauge and high strength pipeline steels with increasing requirements, including X80 SSAW pipe with a thickness of 22.0 mm and above, X80 LSAW pipe combining heavy gauge and large diameter, heavy gauge X80 LSAW pipe with low temperature requirements, as well as X90 steels. In this paper, alloy design, production processing, as well as mechanical properties and microstructure used for these products would be illustrated.
基金Item Sponsored by State Key Development Programfor Basic Research of China(2004CB619105)
文摘Influence of microstructure of the experimental steels on the corrosion fatigue behavior in 3.5% of NaCl aqueous solution was studied.Experimental results show that compared with the full martensite(FM)steel,the carbide-free bainite/martensite(CFB/M)steel has higher corrosion fatigue strength and corrosion fatigue crack threshold(ΔKthcf),and lower corrosion crack propagation rate [(da/dN)cf].
文摘The 1.1C-1.5Si-1.1Mn1.4Cr-0.5Mo-0.6Al-0.6Co (in wt%) steel was treated, respectively, by isothermal austempering process and newly developed austempering-partitioning-tempering process (A-P-T). After austempering at 250, 280 and 300 ℃ for 38, 20 and 10 h, respectively, the sample microstructures were composed of bainitic ferrite plates and film-like retained austenite with thicknesses between 60 and 150 nm. The highest tensile strength of 2003 MPa and hardness value of 53.9 HRC were obtained for the steel after austempering at 250 ℃ for 38 h, resulting from the combining effect of super-saturated martensite decarburization and stabilization of bainitic formation. After A-P-T treating (heated at 300 ℃ for 8 h following water cooling, and then heated at 300 ℃ for 2 h following air cooling), bamboo leaf-like martensite, primary and secondary bainites and retained austenite were observed. The thickness of the secondary bainitic ferrite plates formed during partitioning is much smaller than that of the primary bainite formed during 300 ℃ austempering. Samples subjected to A-P-T treatment showed improvement in ductility compared to that subjected to austempering.
文摘Low carbon bainitic steel derives the high strength mainly from high density of dislocations rather than carbon and alloy element content, so it tends to evolve into equilibrium microstructure with low density of dislocations under thermal disturbance. In the present investigation, granular bainite and lath-like bainitic ferrite were produced respectively in Mo-free low-carbon steels by changing cooling rate;. It has been found that granular bainite possesses a lower strength at room temperature than bainitic ferrite, but it exhibits a slower decrease of strength with temperature increasing. Dislocation density in both granular bainite and bainitic ferrite decreases via recovery and recrystallization at high temperature. However, when reheating of bainite is carded out at temperature below 600 ℃, a long time will be needed for incubation of recrystallization, during which the hardness of bainite maintains stable. The property makes bainite, especially granular bainite, become a potential microstructure for matrix of high strength fire-resistant steel.
基金Item Sponsored by Tianjin Momentous Technology Supporting Program Foundation of China(11ZCKFGX20500)
文摘The growth behavior at the early stage of bainitic transformation was investigated using optical microscopy,X-ray diffraction analysis and transmission electronic microscopy.The bainite was obtained by isothermal transformation at 200 ℃ only for a short time in a high carbon silicon-containing steel after austenitization at 200 ℃ only for 20 min.Transmission electronic microscopy shows that the bainite appears in the form of plates with a width of about 30 nm,and that the interface of the bainite leading tip is wedge shaped.X-ray diffraction analysis reveals that the bainite plates consist of single ferrite phase,with absence of carbides.The results confirm the occurrence of the moiré which suggests the existence of austenite grain boundaries at the bainite leading tip.Both the lateral growth and longitudinal growth of bainite have weak ability to traverse the lattice-distortion strain fields and austenite grain boundary.The austenite grain boundary impedes the longitudinal growth of the bainite plate,i.e.,the growth of bainite plate stops at the austenite grain boundary.The longitudinal growth of bainite associated with the features of shear mechanism can not completely be in accordance with that of martensitic transformation.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0300105)the Fundamental Research Funds for the Central Universities(No.N180725021)the Fundamental Research Funds for the Central Universities(No.N2024005-4)。
文摘This work investigated the evolution of multiphase microstructure and impact fracture behavior of medium carbon high silicon high strength steel subjected to the austempering treatment at 240,360,and400℃.The results show that martensite,bainite,and retained austenite(RA)are the main microstructural phases.The austempering treatments at 360 and 400℃ caused the formation of carbon-poor ferrite in the matrix,and the transformation of ultrafine bainite into coarse lath bainite and granular bainite,respectively.Thick filmy RA was distributed between bainite laths.The polygonal martensiteaustenite islands and blocky RA formed along the grain boundaries.The average carbon concentration in the matrix decreased with the temperature increase,while the impact toughness initially increased and then dropped with temperature.The quasi-cleavage brittle fracture dominated the impact fracture mechanism of the sample austempered at 240℃ by forming tearing surfaces and tearing steps.The microcracks disappeared in the RA on the prior austenite grain boundaries.On the other side,the fracture surface of the sample austempered at 360℃ exhibited ductile fracture with deep dimples and brittle fracture with cleavage river patterns.The polygonal martensite-austenite islands or blocky RA constrained the microcracks.After austempered at 400℃,the brittle fracture was dominant,showing river patterns,and the microcracks propagated through the granular bainite without any resistance.