The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,...The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,1-diphenylethylene (DPE) capped 2-chloro-2,4,4-trimethylpentane (TMPCl) was formed in situ in conjunction with titanium tetrachloride (TiCl(4)). The Lewis acidity of TiCl(4) was decreased by the addition of titanium(IV) isopropoxide (Ti(OiPr)(4)) to accomplish living polymerization of TBDMES. Hydrolysis of poly(TBDMES) in the presence of tetra-butylammonium fluoride yielded poly[4-(2-hydroxyethyl)styrene] (poly(HOES)). FT-IR, NMR and DSC demonstrated the hydrolysis was complete.展开更多
基金supported by the Beijing Municipal Project for Developing Advanced Human Resources for Higher Education(Elastomers and Biomaterials).
文摘The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,1-diphenylethylene (DPE) capped 2-chloro-2,4,4-trimethylpentane (TMPCl) was formed in situ in conjunction with titanium tetrachloride (TiCl(4)). The Lewis acidity of TiCl(4) was decreased by the addition of titanium(IV) isopropoxide (Ti(OiPr)(4)) to accomplish living polymerization of TBDMES. Hydrolysis of poly(TBDMES) in the presence of tetra-butylammonium fluoride yielded poly[4-(2-hydroxyethyl)styrene] (poly(HOES)). FT-IR, NMR and DSC demonstrated the hydrolysis was complete.