For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However...For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However,the previous work focuses mainly on the intrinsic physicochemical property changes of the material,but little attention has been paid to the resulting interfacial regulation of the electrode surface,namely the formation of solid electrolyte interphase(SEI)film.In this work,element F,which has the highest electronegativity,was chosen as the doping source to,more effectively,tune the electronic structure of the hard carbon.The effect of F-doping on the physicochemical properties of hard carbon was not only systematically analyzed but also investigated with spectroscopy,optics,and in situ characterization techniques to further verify that appropriate F-doping plays a positive role in constructing a homogenous and inorganic-rich SEI film.The experimentally demonstrated link between the electronic structure of the electrode and the SEI film properties can reframe the doping optimization strategy as well as provide a new idea for the design of electrode materials with low reduction kinetics to the electrolyte.As a result,the optimized sample with the appropriate F-doping content exhibits the best electrochemical performance with high capacity(434.53 mA h g^(-1)at 20mA g^(-1))and excellent rate capability(141 mAh g^(-1)at 400 mA g^(-1)).展开更多
Antimony sulfide(Sb_(2)S_(3))is a promising anode for lithium-ion batteries due to its high capacity and vast reserves.However,the low electronic conductivity and severe volume change during cycling hinder its commerc...Antimony sulfide(Sb_(2)S_(3))is a promising anode for lithium-ion batteries due to its high capacity and vast reserves.However,the low electronic conductivity and severe volume change during cycling hinder its commercialization.Herein our work,a three-dimensional(3D)Sb_(2)S_(3) thin film anode was fabricated via a simple vapor transport deposition system by using natural stibnite as raw material and stainless steel fiber-foil(SSF)as 3D current collector,and a carbon nanotube interphase was introduced onto the film surface by a simple dropping-heating process to promote the electrochemical performances.This 3D structure can greatly improve the initial coulombic efficiency to a record of 86.6% and high reversible rate capacity of 760.8 mAh·g^(-1) at 10 C.With carbon nanotubes interphase modified,the Sb_(2)S_(3) anode cycled extremely stable with high capacity retention of 94.7% after 160 cycles.This work sheds light on the economical preparation and performance optimization of Sb_(2)S_(3)-based anodes.展开更多
Silicon is an important high capacity anode material for the next generation Li-ion batteries.The electrochemical performances of the Si anode are influenced strongly by the properties of the solid electrolyte interph...Silicon is an important high capacity anode material for the next generation Li-ion batteries.The electrochemical performances of the Si anode are influenced strongly by the properties of the solid electrolyte interphase(SEI).It is well known that the addition of flouroethylene carbonate(FEC)in the carbonate electrolyte is helpful to improve the cyclic performance of the Si anode.The possible origin is suggested to relate to the modification of the SEI.However,detailed information is still absent.In this work,the structural and mechanical properties of the SEI on Si thin film anode in the ethylene-carbonate-based(EC-based)and FEC-based electrolytes at different discharging and charging states have been investigated using a scanning atomic force microscopy force spectroscopy(AFMFS)method.Single-layered,double-layered,and multi-layered SEI structures with various Young’s moduli have been visualized three dimensionally at nanoscale based on the hundreds of force curves in certain scanned area.The coverage of the SEI can be obtained quantitatively from the two-dimensional(2D)project plots.The related analysis indicates that more soft SEI layers are covered on the Si anode,and this could explain the benefits of the FEC additive.展开更多
The resourceful and inexpensive red phosphorus has emerged as a promising anode material of potassium-ion batteries(PIBs) for its large theoretical capacities and low redox potentials in the multielectron alloying/dea...The resourceful and inexpensive red phosphorus has emerged as a promising anode material of potassium-ion batteries(PIBs) for its large theoretical capacities and low redox potentials in the multielectron alloying/dealloying reactions,yet chronically suffering from the huge volume expansion/shrinkage with a sluggish reaction kinetics and an unsatisfactory interfacial stability against volatile electrolytes.Herein,we systematically developed a series of localized high-concentration electrolytes(LHCE) through diluting high-concentration ether electrolytes with a non-solvating fluorinated ether to regulate the formation/evolution of solid electrolyte interphases(SEI) on phosphorus/carbon(P/C) anodes for PIBs.Benefitting from the improved mechanical strength and structural stability of a robust/uniform SEI thin layer derived from a composition-optimized LHCE featured with a unique solvation structure and a superior K+migration capability,the P/C anode with noticeable pseudocapacitive behaviors could achieve a large reversible capacity of 760 mA h g^(-1)at 100 mA g^(-1),a remarkable capacity retention rate of 92.6% over 200 cycles at 800 mA g^(-1),and an exceptional rate capability of 334 mA h g^(-1)at8000 mA g^(-1).Critically,a suppressed reduction of ether solvents with a preferential decomposition of potassium salts in anion-derived interfacial reactions on P/C anode for LHCE could enable a rational construction of an outer organic-rich and inner inorganic-dominant SEI thin film with remarkable mechanical strength/flexibility to buffer huge volume variations and abundant K+diffusion channels to accelerate reaction kinetics.Additionally,the highly reversible/durable full PIBs coupling P/C anodes with annealed organic cathodes further verified an excellent practical applicability of LHCE.This encouraging work on electrolytes regulating SEI formation/evolution would advance the development of P/C anodes for high-performance PIBs.展开更多
Silicon(Si)is a potential high-capacity anode material for the next-generation lithium-ion battery with high energy density.However,Si anodes suff er from severe interfacial chemistry issues,such as side reactions at ...Silicon(Si)is a potential high-capacity anode material for the next-generation lithium-ion battery with high energy density.However,Si anodes suff er from severe interfacial chemistry issues,such as side reactions at the electrode/electrolyte interface,leading to poor electrochemical cycling stability.Herein,we demonstrate the fabrication of a conformal fl uorine-containing carbon(FC)layer on Si particles(Si-FC)and its in situ electrochemical conversion into a LiF-rich carbon layer above 1.5 V(vs.Li^(+)/Li).The as-formed LiF-rich carbon layer not only isolates the active Si and electrolytes,leading to the suppression of side reactions,but also induces the formation of a robust solid-electrolyte interface(SEI),leading to the stable interfacial chemistry of as-designed Si-FC particles.The Si-FC electrode has a high initial Coulombic effi ciency(CE)of 84.8%and a high reversible capacity of 1450 mAh/g at 0.4 C(1000 mA/g)for 300 cycles.In addition,a hybrid electrode consisting of 85 wt%graphite and 15 wt%Si-FC,and mass 2.3 mg/cm^(2) loading delivers a high areal capacity of 2.0 mAh/cm^(2) and a high-capacity retention of 93.2%after 100 cycles,showing the prospects for practical use.展开更多
Carbon nanotubes (CNTs) are a class of carbon allotropes with interesting properties that make them productive materials for usage in various disciplines of nanotechnology such as in electronics equipments, optics and...Carbon nanotubes (CNTs) are a class of carbon allotropes with interesting properties that make them productive materials for usage in various disciplines of nanotechnology such as in electronics equipments, optics and therapeutics. They exhibit distinguished properties viz., strength, and high electrical and heat conductivity. Their uniqueness can be attributed due to the bonding pattern present between the atoms which are very strong and also exhibit high extreme aspect ratios. CNTs are classified as singlewalled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) on the basis of number of sidewalls present and the way they are arranged spatially. Application of CNTs to improve the performance of many products, especially in healthcare, has led to an occupational and public exposure to these nanomaterials. Hence, it becomes a major concern to analyze the issues pertaining to the toxicity of CNTs and find the best suitable ways to counter those challenges. This review summarizes the toxicity issues of CNTs in vitro and in vivo in different organ systems (bio interphases) of the body that result in cellular toxicity.展开更多
Application of sodium-ion batteries is suppressed due to the lack of appropriate electrolytes matching cathode and anode simultaneously.Ether-based electrolytes,preference of anode materials,cannot match with high-pot...Application of sodium-ion batteries is suppressed due to the lack of appropriate electrolytes matching cathode and anode simultaneously.Ether-based electrolytes,preference of anode materials,cannot match with high-potential cathodes failing to apply in full cells.Herein,vinylene carbonate(VC)as an additive into NaCF_(3) SO_(3)-Diglyme(DGM)could make sodium-ion full cells applicable without preactivation of cathode and anode.The assembled FeS@C||Na3 V2(PO_(4))_(3)@C full cell with this electrolyte exhibits long term cycling stability and high capacity retention.The deduced reason is additive VC,whose HOMO level value is close to that of DGM,not only change the solvent sheath structure of Na^(+),but also is synergistically oxidized with DGM to form integrity and consecutive cathode electrolyte interphase on Na3 V2(PO_(4))_(3)@C cathode,which could effectively improve the oxidative stability of electrolyte and prevent the electrolyte decomposition.This work displays a new way to optimize the sodium-ion full cell seasily with bright practical application potential.展开更多
Ionic liquids have been paid much attention and are considered to replace the conventional organic electrolyte and solve the safety issues by virtue of nonvolatility,non-flammability,high ionic conductivity and extend...Ionic liquids have been paid much attention and are considered to replace the conventional organic electrolyte and solve the safety issues by virtue of nonvolatility,non-flammability,high ionic conductivity and extended electrochemical steady window.The paper introduces ionic liquids electrolyte on basis of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI),which shows a wide electrochemical window (0.5-4.5 V vs.Li+/Li),and is theoretically feasible as an electrolyte for Li/LiFePO4batteries to improve the safety.Linear sweep voltammetry (LSV) was performed to investigate the electrochemical stability window of the polymer electrolyte.Interfacial resistance for Li/electrolyte/Li symmetric cells and Li/electrolyte/LiFePO4 cells were studied by electrochemical impedance spectroscopy (EIS).The results showed that additive vinylene carbonate (VC) enhances the formation of solid electrolyte interphase film to protect lithium anodes from corrosion and improves the compatibility of ionic liquid electrolyte towards lithium anodes.Accordingly,Li/LiFePO4cells delivers the initial discharge capacity of 124 mAh g-1 at a current rate of 0.1C in the ionic liquid electrolyte (EMITFSI+0.8 mol L-1LiTFSI+5 wt%VC),and shows better cyclability than in the ionic liquid electrolyte without VC.展开更多
The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercializ...The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercialization.The regular concentration(1_(M))electrolytes with suitable properties(viscosity,ionic conductivity,etc.)are cost-guaranteed,but undesired reactions would always occur and lead to battery degradation during long cycles.To promote the long-term cycle stability in a cost-effective way,this work constructs bidirectional fluorine-rich electrode/electrolyte interphase(EEI)by redistribution of solvents and electrochemical induction.The fluorinated effect with reasonable zoning planning restricts morphological disintegration,meanwhile,forms spatial confinement on cathode.In particular,the obtained cathode electrolyte interphase(CEI)gets the ample ability of Na^(+)transport,which benefits from the fluorinated organics arranged in the epitaxy and the hemi-carbonate content acting on the thickness.Thus,the electrochemical long cycling performance of F-NVPOFⅡF-CC full cells is significantly enhanced(the decay rate at 1 C per cycle is as low as 0.01%).Such a fluorine-rich EEI engineering is expected to take transitional layers against the degradation of cells and make ultra-long cycle batteries possible.展开更多
The 3D fine-woven punctured C/C-(PyC/SiC/TaC)composites,composed of PyC/SiC/TaC interphases and pyrocarbon (PyC)matrix,were synthesized by isothermal chemical vapor infiltration(ICVI)methods.The alternating layers and...The 3D fine-woven punctured C/C-(PyC/SiC/TaC)composites,composed of PyC/SiC/TaC interphases and pyrocarbon (PyC)matrix,were synthesized by isothermal chemical vapor infiltration(ICVI)methods.The alternating layers and the structure of these composites were examined by polarized light microscopy(PLM),X-ray diffractometry(XRD)and scanning electron microscopy(SEM).It is found that the PyC matrix has rough laminar(RL)structure,the TaC layer has NaCl-type cubic structure,and the SiC layer has few wurtzite type 10H-SiC besidesβ-SiC structure.The effects of fiber coating and the bulk density on the tensile and flexural properties of composites along X or Y and Z direction were investigated.It is shown that fiber coated 3D woven punctured C/C composites have good tensile and flexural strength,and the maximum of flexural strength is 375 MPa in X or Y direction at density of 1.89 g/cm 3 ,which is about three times higher than that of samples without TaC/SiC fiber coating.The flexural strength and bending strength increase with increasing the density of the composites.The analysis of fracture surfaces reveals that fibers and fiber bundles are pulled out in composites,indicating that the composite exhibits a non-linear failure behavior through propagation and deflection of the cracks.展开更多
Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a hi...Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance.展开更多
基金National Key R&D Program of China,Grant/Award Number:2022YFB4000120Fundamental Research Funds for the Central Universities,Grant/Award Number:2022ZYGXZR101。
文摘For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However,the previous work focuses mainly on the intrinsic physicochemical property changes of the material,but little attention has been paid to the resulting interfacial regulation of the electrode surface,namely the formation of solid electrolyte interphase(SEI)film.In this work,element F,which has the highest electronegativity,was chosen as the doping source to,more effectively,tune the electronic structure of the hard carbon.The effect of F-doping on the physicochemical properties of hard carbon was not only systematically analyzed but also investigated with spectroscopy,optics,and in situ characterization techniques to further verify that appropriate F-doping plays a positive role in constructing a homogenous and inorganic-rich SEI film.The experimentally demonstrated link between the electronic structure of the electrode and the SEI film properties can reframe the doping optimization strategy as well as provide a new idea for the design of electrode materials with low reduction kinetics to the electrolyte.As a result,the optimized sample with the appropriate F-doping content exhibits the best electrochemical performance with high capacity(434.53 mA h g^(-1)at 20mA g^(-1))and excellent rate capability(141 mAh g^(-1)at 400 mA g^(-1)).
基金financially supported by the National Natural Science Foundation of China(No.51774343).
文摘Antimony sulfide(Sb_(2)S_(3))is a promising anode for lithium-ion batteries due to its high capacity and vast reserves.However,the low electronic conductivity and severe volume change during cycling hinder its commercialization.Herein our work,a three-dimensional(3D)Sb_(2)S_(3) thin film anode was fabricated via a simple vapor transport deposition system by using natural stibnite as raw material and stainless steel fiber-foil(SSF)as 3D current collector,and a carbon nanotube interphase was introduced onto the film surface by a simple dropping-heating process to promote the electrochemical performances.This 3D structure can greatly improve the initial coulombic efficiency to a record of 86.6% and high reversible rate capacity of 760.8 mAh·g^(-1) at 10 C.With carbon nanotubes interphase modified,the Sb_(2)S_(3) anode cycled extremely stable with high capacity retention of 94.7% after 160 cycles.This work sheds light on the economical preparation and performance optimization of Sb_(2)S_(3)-based anodes.
基金Project supported by the State Grid Technology Project,China(Grant No.DG71-17-010)。
文摘Silicon is an important high capacity anode material for the next generation Li-ion batteries.The electrochemical performances of the Si anode are influenced strongly by the properties of the solid electrolyte interphase(SEI).It is well known that the addition of flouroethylene carbonate(FEC)in the carbonate electrolyte is helpful to improve the cyclic performance of the Si anode.The possible origin is suggested to relate to the modification of the SEI.However,detailed information is still absent.In this work,the structural and mechanical properties of the SEI on Si thin film anode in the ethylene-carbonate-based(EC-based)and FEC-based electrolytes at different discharging and charging states have been investigated using a scanning atomic force microscopy force spectroscopy(AFMFS)method.Single-layered,double-layered,and multi-layered SEI structures with various Young’s moduli have been visualized three dimensionally at nanoscale based on the hundreds of force curves in certain scanned area.The coverage of the SEI can be obtained quantitatively from the two-dimensional(2D)project plots.The related analysis indicates that more soft SEI layers are covered on the Si anode,and this could explain the benefits of the FEC additive.
基金supported by the National Key Research and Development Program of China(2021YFB2400200)the National Natural Science Foundation of China(52104313,22172117,52072298)the Scientific Research Program of Shaanxi Provincial Education Department(21JK0808)。
文摘The resourceful and inexpensive red phosphorus has emerged as a promising anode material of potassium-ion batteries(PIBs) for its large theoretical capacities and low redox potentials in the multielectron alloying/dealloying reactions,yet chronically suffering from the huge volume expansion/shrinkage with a sluggish reaction kinetics and an unsatisfactory interfacial stability against volatile electrolytes.Herein,we systematically developed a series of localized high-concentration electrolytes(LHCE) through diluting high-concentration ether electrolytes with a non-solvating fluorinated ether to regulate the formation/evolution of solid electrolyte interphases(SEI) on phosphorus/carbon(P/C) anodes for PIBs.Benefitting from the improved mechanical strength and structural stability of a robust/uniform SEI thin layer derived from a composition-optimized LHCE featured with a unique solvation structure and a superior K+migration capability,the P/C anode with noticeable pseudocapacitive behaviors could achieve a large reversible capacity of 760 mA h g^(-1)at 100 mA g^(-1),a remarkable capacity retention rate of 92.6% over 200 cycles at 800 mA g^(-1),and an exceptional rate capability of 334 mA h g^(-1)at8000 mA g^(-1).Critically,a suppressed reduction of ether solvents with a preferential decomposition of potassium salts in anion-derived interfacial reactions on P/C anode for LHCE could enable a rational construction of an outer organic-rich and inner inorganic-dominant SEI thin film with remarkable mechanical strength/flexibility to buffer huge volume variations and abundant K+diffusion channels to accelerate reaction kinetics.Additionally,the highly reversible/durable full PIBs coupling P/C anodes with annealed organic cathodes further verified an excellent practical applicability of LHCE.This encouraging work on electrolytes regulating SEI formation/evolution would advance the development of P/C anodes for high-performance PIBs.
基金supported by the Innovation Fund of Wuhan National Laboratory for Optoelectronics of Huazhong University of Science and Technology.
文摘Silicon(Si)is a potential high-capacity anode material for the next-generation lithium-ion battery with high energy density.However,Si anodes suff er from severe interfacial chemistry issues,such as side reactions at the electrode/electrolyte interface,leading to poor electrochemical cycling stability.Herein,we demonstrate the fabrication of a conformal fl uorine-containing carbon(FC)layer on Si particles(Si-FC)and its in situ electrochemical conversion into a LiF-rich carbon layer above 1.5 V(vs.Li^(+)/Li).The as-formed LiF-rich carbon layer not only isolates the active Si and electrolytes,leading to the suppression of side reactions,but also induces the formation of a robust solid-electrolyte interface(SEI),leading to the stable interfacial chemistry of as-designed Si-FC particles.The Si-FC electrode has a high initial Coulombic effi ciency(CE)of 84.8%and a high reversible capacity of 1450 mAh/g at 0.4 C(1000 mA/g)for 300 cycles.In addition,a hybrid electrode consisting of 85 wt%graphite and 15 wt%Si-FC,and mass 2.3 mg/cm^(2) loading delivers a high areal capacity of 2.0 mAh/cm^(2) and a high-capacity retention of 93.2%after 100 cycles,showing the prospects for practical use.
文摘Carbon nanotubes (CNTs) are a class of carbon allotropes with interesting properties that make them productive materials for usage in various disciplines of nanotechnology such as in electronics equipments, optics and therapeutics. They exhibit distinguished properties viz., strength, and high electrical and heat conductivity. Their uniqueness can be attributed due to the bonding pattern present between the atoms which are very strong and also exhibit high extreme aspect ratios. CNTs are classified as singlewalled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) on the basis of number of sidewalls present and the way they are arranged spatially. Application of CNTs to improve the performance of many products, especially in healthcare, has led to an occupational and public exposure to these nanomaterials. Hence, it becomes a major concern to analyze the issues pertaining to the toxicity of CNTs and find the best suitable ways to counter those challenges. This review summarizes the toxicity issues of CNTs in vitro and in vivo in different organ systems (bio interphases) of the body that result in cellular toxicity.
基金supported by the National Natural Science Foundation of China(Nos.U1804129,21771164,21671205,U1804126)Zhongyuan Youth Talent Support Program of Henan ProvinceZhengzhou University Youth Innovation Program。
文摘Application of sodium-ion batteries is suppressed due to the lack of appropriate electrolytes matching cathode and anode simultaneously.Ether-based electrolytes,preference of anode materials,cannot match with high-potential cathodes failing to apply in full cells.Herein,vinylene carbonate(VC)as an additive into NaCF_(3) SO_(3)-Diglyme(DGM)could make sodium-ion full cells applicable without preactivation of cathode and anode.The assembled FeS@C||Na3 V2(PO_(4))_(3)@C full cell with this electrolyte exhibits long term cycling stability and high capacity retention.The deduced reason is additive VC,whose HOMO level value is close to that of DGM,not only change the solvent sheath structure of Na^(+),but also is synergistically oxidized with DGM to form integrity and consecutive cathode electrolyte interphase on Na3 V2(PO_(4))_(3)@C cathode,which could effectively improve the oxidative stability of electrolyte and prevent the electrolyte decomposition.This work displays a new way to optimize the sodium-ion full cell seasily with bright practical application potential.
基金Sponsored by the Natural Science Foundation of Heilongjiang Province of China (Grant No.B2007-05)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (Grant No.HIT.NSRIF.2009121)
文摘Ionic liquids have been paid much attention and are considered to replace the conventional organic electrolyte and solve the safety issues by virtue of nonvolatility,non-flammability,high ionic conductivity and extended electrochemical steady window.The paper introduces ionic liquids electrolyte on basis of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI),which shows a wide electrochemical window (0.5-4.5 V vs.Li+/Li),and is theoretically feasible as an electrolyte for Li/LiFePO4batteries to improve the safety.Linear sweep voltammetry (LSV) was performed to investigate the electrochemical stability window of the polymer electrolyte.Interfacial resistance for Li/electrolyte/Li symmetric cells and Li/electrolyte/LiFePO4 cells were studied by electrochemical impedance spectroscopy (EIS).The results showed that additive vinylene carbonate (VC) enhances the formation of solid electrolyte interphase film to protect lithium anodes from corrosion and improves the compatibility of ionic liquid electrolyte towards lithium anodes.Accordingly,Li/LiFePO4cells delivers the initial discharge capacity of 124 mAh g-1 at a current rate of 0.1C in the ionic liquid electrolyte (EMITFSI+0.8 mol L-1LiTFSI+5 wt%VC),and shows better cyclability than in the ionic liquid electrolyte without VC.
基金supported by the National Natural Science Foundation of China(No.91963118 and 52102213)Science Technology Program of Jilin Province(No.20200201066JC)the 111 Project(No.B13013).
文摘The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercialization.The regular concentration(1_(M))electrolytes with suitable properties(viscosity,ionic conductivity,etc.)are cost-guaranteed,but undesired reactions would always occur and lead to battery degradation during long cycles.To promote the long-term cycle stability in a cost-effective way,this work constructs bidirectional fluorine-rich electrode/electrolyte interphase(EEI)by redistribution of solvents and electrochemical induction.The fluorinated effect with reasonable zoning planning restricts morphological disintegration,meanwhile,forms spatial confinement on cathode.In particular,the obtained cathode electrolyte interphase(CEI)gets the ample ability of Na^(+)transport,which benefits from the fluorinated organics arranged in the epitaxy and the hemi-carbonate content acting on the thickness.Thus,the electrochemical long cycling performance of F-NVPOFⅡF-CC full cells is significantly enhanced(the decay rate at 1 C per cycle is as low as 0.01%).Such a fluorine-rich EEI engineering is expected to take transitional layers against the degradation of cells and make ultra-long cycle batteries possible.
基金Project(50872154)supported by the National Natural Science Foundation of ChinaProject(20080431029)supported by China Postdoctoral Science FoundationProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘The 3D fine-woven punctured C/C-(PyC/SiC/TaC)composites,composed of PyC/SiC/TaC interphases and pyrocarbon (PyC)matrix,were synthesized by isothermal chemical vapor infiltration(ICVI)methods.The alternating layers and the structure of these composites were examined by polarized light microscopy(PLM),X-ray diffractometry(XRD)and scanning electron microscopy(SEM).It is found that the PyC matrix has rough laminar(RL)structure,the TaC layer has NaCl-type cubic structure,and the SiC layer has few wurtzite type 10H-SiC besidesβ-SiC structure.The effects of fiber coating and the bulk density on the tensile and flexural properties of composites along X or Y and Z direction were investigated.It is shown that fiber coated 3D woven punctured C/C composites have good tensile and flexural strength,and the maximum of flexural strength is 375 MPa in X or Y direction at density of 1.89 g/cm 3 ,which is about three times higher than that of samples without TaC/SiC fiber coating.The flexural strength and bending strength increase with increasing the density of the composites.The analysis of fracture surfaces reveals that fibers and fiber bundles are pulled out in composites,indicating that the composite exhibits a non-linear failure behavior through propagation and deflection of the cracks.
基金The authors are grateful for the grants provided by the National Natural Science Foundation of China(Grant no.52274309)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant no.CX20220183)Simin Li thanks the National Natural Science Foundation of China(Grant no.52204327).
文摘Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance.